An agent specific planning algorithm
- Autores
- Berdun, Luis Sebastian; Amandi, Analia Adriana; Campo, Marcelo Ricardo
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Planning algorithms are often applied by intelligent agents for achieving their goals. For the plan creation, this kind of algorithm uses only an initial state definition, a set of actions, and a goal; while agents also have preferences and desires that should to be taken into account. Thus, agents need to spend time analyzing each plan returned by these algorithms to find one that satisfies their preferences. In this context, we have studied an alternative in which a classical planner could be modified to accept a new conceptual parameter for a plan creation: an agent mental state composed by preferences and constraints. In this work, we present a planning algorithm that extends a partial order algorithm to deal with the agent’s preferences. In this way, our algorithm builds an adequate plan in terms of agent mental state. In this article, we introduce this algorithm and expose experimental results showing the advantages of this adaptation.
Fil: Berdun, Luis Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina
Fil: Amandi, Analia Adriana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Campo, Marcelo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina - Materia
-
Intelligent Agents
Planning
Agents preferences - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/280871
Ver los metadatos del registro completo
| id |
CONICETDig_e05a95f42f9dfa8001ca480e0683575d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/280871 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
An agent specific planning algorithmBerdun, Luis SebastianAmandi, Analia AdrianaCampo, Marcelo RicardoIntelligent AgentsPlanningAgents preferenceshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Planning algorithms are often applied by intelligent agents for achieving their goals. For the plan creation, this kind of algorithm uses only an initial state definition, a set of actions, and a goal; while agents also have preferences and desires that should to be taken into account. Thus, agents need to spend time analyzing each plan returned by these algorithms to find one that satisfies their preferences. In this context, we have studied an alternative in which a classical planner could be modified to accept a new conceptual parameter for a plan creation: an agent mental state composed by preferences and constraints. In this work, we present a planning algorithm that extends a partial order algorithm to deal with the agent’s preferences. In this way, our algorithm builds an adequate plan in terms of agent mental state. In this article, we introduce this algorithm and expose experimental results showing the advantages of this adaptation.Fil: Berdun, Luis Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; ArgentinaFil: Amandi, Analia Adriana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Campo, Marcelo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; ArgentinaPergamon-Elsevier Science Ltd2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/280871Berdun, Luis Sebastian; Amandi, Analia Adriana; Campo, Marcelo Ricardo; An agent specific planning algorithm; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 39; 5; 4-2012; 4860-48730957-4174CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0957417411014916info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2011.10.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2026-02-06T12:27:06Zoai:ri.conicet.gov.ar:11336/280871instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982026-02-06 12:27:06.547CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
An agent specific planning algorithm |
| title |
An agent specific planning algorithm |
| spellingShingle |
An agent specific planning algorithm Berdun, Luis Sebastian Intelligent Agents Planning Agents preferences |
| title_short |
An agent specific planning algorithm |
| title_full |
An agent specific planning algorithm |
| title_fullStr |
An agent specific planning algorithm |
| title_full_unstemmed |
An agent specific planning algorithm |
| title_sort |
An agent specific planning algorithm |
| dc.creator.none.fl_str_mv |
Berdun, Luis Sebastian Amandi, Analia Adriana Campo, Marcelo Ricardo |
| author |
Berdun, Luis Sebastian |
| author_facet |
Berdun, Luis Sebastian Amandi, Analia Adriana Campo, Marcelo Ricardo |
| author_role |
author |
| author2 |
Amandi, Analia Adriana Campo, Marcelo Ricardo |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Intelligent Agents Planning Agents preferences |
| topic |
Intelligent Agents Planning Agents preferences |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Planning algorithms are often applied by intelligent agents for achieving their goals. For the plan creation, this kind of algorithm uses only an initial state definition, a set of actions, and a goal; while agents also have preferences and desires that should to be taken into account. Thus, agents need to spend time analyzing each plan returned by these algorithms to find one that satisfies their preferences. In this context, we have studied an alternative in which a classical planner could be modified to accept a new conceptual parameter for a plan creation: an agent mental state composed by preferences and constraints. In this work, we present a planning algorithm that extends a partial order algorithm to deal with the agent’s preferences. In this way, our algorithm builds an adequate plan in terms of agent mental state. In this article, we introduce this algorithm and expose experimental results showing the advantages of this adaptation. Fil: Berdun, Luis Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina Fil: Amandi, Analia Adriana. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Campo, Marcelo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina |
| description |
Planning algorithms are often applied by intelligent agents for achieving their goals. For the plan creation, this kind of algorithm uses only an initial state definition, a set of actions, and a goal; while agents also have preferences and desires that should to be taken into account. Thus, agents need to spend time analyzing each plan returned by these algorithms to find one that satisfies their preferences. In this context, we have studied an alternative in which a classical planner could be modified to accept a new conceptual parameter for a plan creation: an agent mental state composed by preferences and constraints. In this work, we present a planning algorithm that extends a partial order algorithm to deal with the agent’s preferences. In this way, our algorithm builds an adequate plan in terms of agent mental state. In this article, we introduce this algorithm and expose experimental results showing the advantages of this adaptation. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/280871 Berdun, Luis Sebastian; Amandi, Analia Adriana; Campo, Marcelo Ricardo; An agent specific planning algorithm; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 39; 5; 4-2012; 4860-4873 0957-4174 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/280871 |
| identifier_str_mv |
Berdun, Luis Sebastian; Amandi, Analia Adriana; Campo, Marcelo Ricardo; An agent specific planning algorithm; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 39; 5; 4-2012; 4860-4873 0957-4174 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0957417411014916 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2011.10.006 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1856403091819069440 |
| score |
13.106097 |