An image processing pipeline to segment iris for unconstrained cow identification system
- Autores
- Larregui, Juan Ignacio; Cazzato, Dario; Castro, Silvia Mabel
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- One of the most evident costs in cow farming is the identification of the animals. Classic identification processes are labour-intensive, prone to human errors and invasive for the animal. An automated alternative is an animal identification based on unique biometric patterns like iris recognition; in this context, correct segmentation of the region of interest becomes of critical importance. This work introduces a bovine iris segmentation pipeline that processes images taken in the wild, extracting the iris region. The solution deals with images taken with a regular visible-light camera in real scenarios, where reflections in the iris and camera flash introduce a high level of noise that makes the segmentation procedure challenging. Traditional segmentation techniques for the human iris are not applicable given the nature of the bovine eye; at this aim, a dataset composed of catalogued images and manually labelled ground truth data of Aberdeen-Angus has been used for the experiments and made publicly available. The unique ID number for each different animal in the dataset is provided, making it suitable for recognition tasks. Segmentation results have been validated with our dataset showing high reliability: with the most pessimistic metric (i.e. intersection over union), a mean score of 0.8957 has been obtained.
Fil: Larregui, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina
Fil: Cazzato, Dario. : University Of Luxembourg; Luxemburgo. Interdisciplinary Centre For Security Reliability And T; Luxemburgo
Fil: Castro, Silvia Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina - Materia
-
BOVINE EYE
IMAGE PROCESSING
IRIS SEGMENTATION
PUPIL SEGMENTATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/135193
Ver los metadatos del registro completo
id |
CONICETDig_deeb9b2c4e7571c714dda60707029aba |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/135193 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An image processing pipeline to segment iris for unconstrained cow identification systemLarregui, Juan IgnacioCazzato, DarioCastro, Silvia MabelBOVINE EYEIMAGE PROCESSINGIRIS SEGMENTATIONPUPIL SEGMENTATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2One of the most evident costs in cow farming is the identification of the animals. Classic identification processes are labour-intensive, prone to human errors and invasive for the animal. An automated alternative is an animal identification based on unique biometric patterns like iris recognition; in this context, correct segmentation of the region of interest becomes of critical importance. This work introduces a bovine iris segmentation pipeline that processes images taken in the wild, extracting the iris region. The solution deals with images taken with a regular visible-light camera in real scenarios, where reflections in the iris and camera flash introduce a high level of noise that makes the segmentation procedure challenging. Traditional segmentation techniques for the human iris are not applicable given the nature of the bovine eye; at this aim, a dataset composed of catalogued images and manually labelled ground truth data of Aberdeen-Angus has been used for the experiments and made publicly available. The unique ID number for each different animal in the dataset is provided, making it suitable for recognition tasks. Segmentation results have been validated with our dataset showing high reliability: with the most pessimistic metric (i.e. intersection over union), a mean score of 0.8957 has been obtained.Fil: Larregui, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaFil: Cazzato, Dario. : University Of Luxembourg; Luxemburgo. Interdisciplinary Centre For Security Reliability And T; LuxemburgoFil: Castro, Silvia Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; ArgentinaDe Gruyter2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/135193Larregui, Juan Ignacio; Cazzato, Dario; Castro, Silvia Mabel; An image processing pipeline to segment iris for unconstrained cow identification system; De Gruyter; Open Computer Science; 9; 1; 1-2019; 145-1592299-10932299-1093CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/journals/comp/9/1/article-p145.xmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/comp-2019-0010info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:42Zoai:ri.conicet.gov.ar:11336/135193instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:42.811CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An image processing pipeline to segment iris for unconstrained cow identification system |
title |
An image processing pipeline to segment iris for unconstrained cow identification system |
spellingShingle |
An image processing pipeline to segment iris for unconstrained cow identification system Larregui, Juan Ignacio BOVINE EYE IMAGE PROCESSING IRIS SEGMENTATION PUPIL SEGMENTATION |
title_short |
An image processing pipeline to segment iris for unconstrained cow identification system |
title_full |
An image processing pipeline to segment iris for unconstrained cow identification system |
title_fullStr |
An image processing pipeline to segment iris for unconstrained cow identification system |
title_full_unstemmed |
An image processing pipeline to segment iris for unconstrained cow identification system |
title_sort |
An image processing pipeline to segment iris for unconstrained cow identification system |
dc.creator.none.fl_str_mv |
Larregui, Juan Ignacio Cazzato, Dario Castro, Silvia Mabel |
author |
Larregui, Juan Ignacio |
author_facet |
Larregui, Juan Ignacio Cazzato, Dario Castro, Silvia Mabel |
author_role |
author |
author2 |
Cazzato, Dario Castro, Silvia Mabel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BOVINE EYE IMAGE PROCESSING IRIS SEGMENTATION PUPIL SEGMENTATION |
topic |
BOVINE EYE IMAGE PROCESSING IRIS SEGMENTATION PUPIL SEGMENTATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
One of the most evident costs in cow farming is the identification of the animals. Classic identification processes are labour-intensive, prone to human errors and invasive for the animal. An automated alternative is an animal identification based on unique biometric patterns like iris recognition; in this context, correct segmentation of the region of interest becomes of critical importance. This work introduces a bovine iris segmentation pipeline that processes images taken in the wild, extracting the iris region. The solution deals with images taken with a regular visible-light camera in real scenarios, where reflections in the iris and camera flash introduce a high level of noise that makes the segmentation procedure challenging. Traditional segmentation techniques for the human iris are not applicable given the nature of the bovine eye; at this aim, a dataset composed of catalogued images and manually labelled ground truth data of Aberdeen-Angus has been used for the experiments and made publicly available. The unique ID number for each different animal in the dataset is provided, making it suitable for recognition tasks. Segmentation results have been validated with our dataset showing high reliability: with the most pessimistic metric (i.e. intersection over union), a mean score of 0.8957 has been obtained. Fil: Larregui, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina Fil: Cazzato, Dario. : University Of Luxembourg; Luxemburgo. Interdisciplinary Centre For Security Reliability And T; Luxemburgo Fil: Castro, Silvia Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina |
description |
One of the most evident costs in cow farming is the identification of the animals. Classic identification processes are labour-intensive, prone to human errors and invasive for the animal. An automated alternative is an animal identification based on unique biometric patterns like iris recognition; in this context, correct segmentation of the region of interest becomes of critical importance. This work introduces a bovine iris segmentation pipeline that processes images taken in the wild, extracting the iris region. The solution deals with images taken with a regular visible-light camera in real scenarios, where reflections in the iris and camera flash introduce a high level of noise that makes the segmentation procedure challenging. Traditional segmentation techniques for the human iris are not applicable given the nature of the bovine eye; at this aim, a dataset composed of catalogued images and manually labelled ground truth data of Aberdeen-Angus has been used for the experiments and made publicly available. The unique ID number for each different animal in the dataset is provided, making it suitable for recognition tasks. Segmentation results have been validated with our dataset showing high reliability: with the most pessimistic metric (i.e. intersection over union), a mean score of 0.8957 has been obtained. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/135193 Larregui, Juan Ignacio; Cazzato, Dario; Castro, Silvia Mabel; An image processing pipeline to segment iris for unconstrained cow identification system; De Gruyter; Open Computer Science; 9; 1; 1-2019; 145-159 2299-1093 2299-1093 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/135193 |
identifier_str_mv |
Larregui, Juan Ignacio; Cazzato, Dario; Castro, Silvia Mabel; An image processing pipeline to segment iris for unconstrained cow identification system; De Gruyter; Open Computer Science; 9; 1; 1-2019; 145-159 2299-1093 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/journals/comp/9/1/article-p145.xml info:eu-repo/semantics/altIdentifier/doi/10.1515/comp-2019-0010 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844612999285833728 |
score |
13.069144 |