Population genetic structure of the ascidian Styela rustica at Kongsfjord, Svalbard, Arctic Ocean

Autores
Demarchi, Maria Milagros; Chiappero, Marina Beatriz; Laudien, Jürgen; Sahade, Ricardo Jose
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The actual Arctic biota shows a strong affinity with that of the Boreal Atlantic and Pacific ones, as a result of an active recolonization process after the Quaternary glaciations. The geographic distribution of sessile species is usually linked to larvae dispersive capabilities which can be directly related with time spent in the plankton. Ascidians larvae are lecitothorphic and short-lived, which suggest that ascidians could be not efficient dispersers. However, the solitary ascidian Styela rustica (Linnaeus, 1767) (Tunicata, Ascidiacea) shows a wide distribution pattern from the North Atlantic to the Arctic that, together with the relatively recent colonization of the Arctic system could indicate that this species efficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.finity with that of the Boreal Atlantic and Pacific ones, as a result of an active recolonization process after the Quaternary glaciations. The geographic distribution of sessile species is usually linked to larvae dispersive capabilities which can be directly related with time spent in the plankton. Ascidians larvae are lecitothorphic and short-lived, which suggest that ascidians could be not efficient dispersers. However, the solitary ascidian Styela rustica (Linnaeus, 1767) (Tunicata, Ascidiacea) shows a wide distribution pattern from the North Atlantic to the Arctic that, together with the relatively recent colonization of the Arctic system could indicate that this species efficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.ficient dispersers. However, the solitary ascidian Styela rustica (Linnaeus, 1767) (Tunicata, Ascidiacea) shows a wide distribution pattern from the North Atlantic to the Arctic that, together with the relatively recent colonization of the Arctic system could indicate that this species efficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.ficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.flow among populations in the fjord.
Fil: Demarchi, Maria Milagros. Universidad Nacional de Córdoba. Facultad de Cs.exactas Fisicas y Naturales. Departamento de Diversidad Biologica y Ecologica. Cat.de Ecologia Marina; Argentina. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Cátedra de Genética de Poblaciones y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Chiappero, Marina Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Cátedra de Genética de Poblaciones y Evolución; Argentina
Fil: Laudien, Jürgen. Alfred Wegener Institut für Polar und Meeresforschung; Alemania
Fil: Sahade, Ricardo Jose. Universidad Nacional de Córdoba. Facultad de Cs.exactas Fisicas y Naturales. Departamento de Diversidad Biologica y Ecologica. Cat.de Ecologia Marina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Materia
ARCTIC
ASCIDIAN
GENETIC STRUCTURE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/242172

id CONICETDig_deb81325762890f3070412eaf3f455c3
oai_identifier_str oai:ri.conicet.gov.ar:11336/242172
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Population genetic structure of the ascidian Styela rustica at Kongsfjord, Svalbard, Arctic OceanDemarchi, Maria MilagrosChiappero, Marina BeatrizLaudien, JürgenSahade, Ricardo JoseARCTICASCIDIANGENETIC STRUCTUREhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The actual Arctic biota shows a strong affinity with that of the Boreal Atlantic and Pacific ones, as a result of an active recolonization process after the Quaternary glaciations. The geographic distribution of sessile species is usually linked to larvae dispersive capabilities which can be directly related with time spent in the plankton. Ascidians larvae are lecitothorphic and short-lived, which suggest that ascidians could be not efficient dispersers. However, the solitary ascidian Styela rustica (Linnaeus, 1767) (Tunicata, Ascidiacea) shows a wide distribution pattern from the North Atlantic to the Arctic that, together with the relatively recent colonization of the Arctic system could indicate that this species efficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.finity with that of the Boreal Atlantic and Pacific ones, as a result of an active recolonization process after the Quaternary glaciations. The geographic distribution of sessile species is usually linked to larvae dispersive capabilities which can be directly related with time spent in the plankton. Ascidians larvae are lecitothorphic and short-lived, which suggest that ascidians could be not efficient dispersers. However, the solitary ascidian Styela rustica (Linnaeus, 1767) (Tunicata, Ascidiacea) shows a wide distribution pattern from the North Atlantic to the Arctic that, together with the relatively recent colonization of the Arctic system could indicate that this species efficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.ficient dispersers. However, the solitary ascidian Styela rustica (Linnaeus, 1767) (Tunicata, Ascidiacea) shows a wide distribution pattern from the North Atlantic to the Arctic that, together with the relatively recent colonization of the Arctic system could indicate that this species efficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.ficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.flow among populations in the fjord.Fil: Demarchi, Maria Milagros. Universidad Nacional de Córdoba. Facultad de Cs.exactas Fisicas y Naturales. Departamento de Diversidad Biologica y Ecologica. Cat.de Ecologia Marina; Argentina. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Cátedra de Genética de Poblaciones y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Chiappero, Marina Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Cátedra de Genética de Poblaciones y Evolución; ArgentinaFil: Laudien, Jürgen. Alfred Wegener Institut für Polar und Meeresforschung; AlemaniaFil: Sahade, Ricardo Jose. Universidad Nacional de Córdoba. Facultad de Cs.exactas Fisicas y Naturales. Departamento de Diversidad Biologica y Ecologica. Cat.de Ecologia Marina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaElsevier Science2008-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242172Demarchi, Maria Milagros; Chiappero, Marina Beatriz; Laudien, Jürgen; Sahade, Ricardo Jose; Population genetic structure of the ascidian Styela rustica at Kongsfjord, Svalbard, Arctic Ocean; Elsevier Science; Journal of Experimental Marine Biology and Ecology; 364; 1; 9-2008; 29-340022-0981CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022098108002918info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jembe.2008.06.022info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:28:13Zoai:ri.conicet.gov.ar:11336/242172instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:28:13.36CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Population genetic structure of the ascidian Styela rustica at Kongsfjord, Svalbard, Arctic Ocean
title Population genetic structure of the ascidian Styela rustica at Kongsfjord, Svalbard, Arctic Ocean
spellingShingle Population genetic structure of the ascidian Styela rustica at Kongsfjord, Svalbard, Arctic Ocean
Demarchi, Maria Milagros
ARCTIC
ASCIDIAN
GENETIC STRUCTURE
title_short Population genetic structure of the ascidian Styela rustica at Kongsfjord, Svalbard, Arctic Ocean
title_full Population genetic structure of the ascidian Styela rustica at Kongsfjord, Svalbard, Arctic Ocean
title_fullStr Population genetic structure of the ascidian Styela rustica at Kongsfjord, Svalbard, Arctic Ocean
title_full_unstemmed Population genetic structure of the ascidian Styela rustica at Kongsfjord, Svalbard, Arctic Ocean
title_sort Population genetic structure of the ascidian Styela rustica at Kongsfjord, Svalbard, Arctic Ocean
dc.creator.none.fl_str_mv Demarchi, Maria Milagros
Chiappero, Marina Beatriz
Laudien, Jürgen
Sahade, Ricardo Jose
author Demarchi, Maria Milagros
author_facet Demarchi, Maria Milagros
Chiappero, Marina Beatriz
Laudien, Jürgen
Sahade, Ricardo Jose
author_role author
author2 Chiappero, Marina Beatriz
Laudien, Jürgen
Sahade, Ricardo Jose
author2_role author
author
author
dc.subject.none.fl_str_mv ARCTIC
ASCIDIAN
GENETIC STRUCTURE
topic ARCTIC
ASCIDIAN
GENETIC STRUCTURE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The actual Arctic biota shows a strong affinity with that of the Boreal Atlantic and Pacific ones, as a result of an active recolonization process after the Quaternary glaciations. The geographic distribution of sessile species is usually linked to larvae dispersive capabilities which can be directly related with time spent in the plankton. Ascidians larvae are lecitothorphic and short-lived, which suggest that ascidians could be not efficient dispersers. However, the solitary ascidian Styela rustica (Linnaeus, 1767) (Tunicata, Ascidiacea) shows a wide distribution pattern from the North Atlantic to the Arctic that, together with the relatively recent colonization of the Arctic system could indicate that this species efficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.finity with that of the Boreal Atlantic and Pacific ones, as a result of an active recolonization process after the Quaternary glaciations. The geographic distribution of sessile species is usually linked to larvae dispersive capabilities which can be directly related with time spent in the plankton. Ascidians larvae are lecitothorphic and short-lived, which suggest that ascidians could be not efficient dispersers. However, the solitary ascidian Styela rustica (Linnaeus, 1767) (Tunicata, Ascidiacea) shows a wide distribution pattern from the North Atlantic to the Arctic that, together with the relatively recent colonization of the Arctic system could indicate that this species efficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.ficient dispersers. However, the solitary ascidian Styela rustica (Linnaeus, 1767) (Tunicata, Ascidiacea) shows a wide distribution pattern from the North Atlantic to the Arctic that, together with the relatively recent colonization of the Arctic system could indicate that this species efficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.ficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.flow among populations in the fjord.
Fil: Demarchi, Maria Milagros. Universidad Nacional de Córdoba. Facultad de Cs.exactas Fisicas y Naturales. Departamento de Diversidad Biologica y Ecologica. Cat.de Ecologia Marina; Argentina. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Cátedra de Genética de Poblaciones y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
Fil: Chiappero, Marina Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Córdoba. Facultad de Cs.exactas Físicas y Naturales. Cátedra de Genética de Poblaciones y Evolución; Argentina
Fil: Laudien, Jürgen. Alfred Wegener Institut für Polar und Meeresforschung; Alemania
Fil: Sahade, Ricardo Jose. Universidad Nacional de Córdoba. Facultad de Cs.exactas Fisicas y Naturales. Departamento de Diversidad Biologica y Ecologica. Cat.de Ecologia Marina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina
description The actual Arctic biota shows a strong affinity with that of the Boreal Atlantic and Pacific ones, as a result of an active recolonization process after the Quaternary glaciations. The geographic distribution of sessile species is usually linked to larvae dispersive capabilities which can be directly related with time spent in the plankton. Ascidians larvae are lecitothorphic and short-lived, which suggest that ascidians could be not efficient dispersers. However, the solitary ascidian Styela rustica (Linnaeus, 1767) (Tunicata, Ascidiacea) shows a wide distribution pattern from the North Atlantic to the Arctic that, together with the relatively recent colonization of the Arctic system could indicate that this species efficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.finity with that of the Boreal Atlantic and Pacific ones, as a result of an active recolonization process after the Quaternary glaciations. The geographic distribution of sessile species is usually linked to larvae dispersive capabilities which can be directly related with time spent in the plankton. Ascidians larvae are lecitothorphic and short-lived, which suggest that ascidians could be not efficient dispersers. However, the solitary ascidian Styela rustica (Linnaeus, 1767) (Tunicata, Ascidiacea) shows a wide distribution pattern from the North Atlantic to the Arctic that, together with the relatively recent colonization of the Arctic system could indicate that this species efficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.ficient dispersers. However, the solitary ascidian Styela rustica (Linnaeus, 1767) (Tunicata, Ascidiacea) shows a wide distribution pattern from the North Atlantic to the Arctic that, together with the relatively recent colonization of the Arctic system could indicate that this species efficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.ficiently disperses and colonizes new habitats. In this study we used ISSR-PCR markers to study the genetic structure of five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.five populations of the ascidian Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.Styela rustica at Kongsfjorden, west Spitsbergen (Svalbard archipelago). We analyzed whether this species presents a low genetic structure, as can be expected due to the historical process of recent post glaciations colonization, or if there is genetic differentiation at a local scale, caused by short-lived larvae and limited dispersal potential. The genetic diversity in each population assessed using the marker diversity index (M) ranged from 0.288 to 0.324. Population HN, situated close to a fast retreating glacier, showed the lowest diversity. Processes associated with deglatiation (icebergs calving from the glacier that scour the benthos and the increment of inorganic particulate matter on the water column) would drive to reduced population sizes and explain the reduced genetic variability observed in the HN population with respect to the others in the fjord. This suggests a possible linkage with the global warming process. Although the weak genetic structure found among the studied populations could indicate a founder effect, the genetic landscape shape analysis together with a positive relationship between genetic and geographic distances also suggest possible current gene flow among populations in the fjord.flow among populations in the fjord.
publishDate 2008
dc.date.none.fl_str_mv 2008-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/242172
Demarchi, Maria Milagros; Chiappero, Marina Beatriz; Laudien, Jürgen; Sahade, Ricardo Jose; Population genetic structure of the ascidian Styela rustica at Kongsfjord, Svalbard, Arctic Ocean; Elsevier Science; Journal of Experimental Marine Biology and Ecology; 364; 1; 9-2008; 29-34
0022-0981
CONICET Digital
CONICET
url http://hdl.handle.net/11336/242172
identifier_str_mv Demarchi, Maria Milagros; Chiappero, Marina Beatriz; Laudien, Jürgen; Sahade, Ricardo Jose; Population genetic structure of the ascidian Styela rustica at Kongsfjord, Svalbard, Arctic Ocean; Elsevier Science; Journal of Experimental Marine Biology and Ecology; 364; 1; 9-2008; 29-34
0022-0981
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022098108002918
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jembe.2008.06.022
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082744909561856
score 13.22299