A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization

Autores
Cardozo Gizzi, Andres Mauricio
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The genome tridimensional (3D) organization and its role towards the regulation of key cell processes such as transcription is currently a main question in biology. Interphase chromosomes are spatially segregated into “territories,” epigenetically-defined large domains of chromatin that interact to form “compartments” with common transcriptional status, and insulator-flanked domains called “topologically associating domains” (TADs). Moreover, chromatin organizes around nuclear structures such as lamina, speckles, or the nucleolus to acquire a higher-order genome organization. Due to recent technological advances, the different hierarchies are being solved. Particularly, advances in microscopy technologies are shedding light on the genome structure at multiple levels. Intriguingly, more and more reports point to high variability and stochasticity at the single-cell level. However, the functional consequences of such variability in genome conformation are still unsolved. Here, I will discuss the implication of the cell-to-cell heterogeneity at the different scales in the context of newly developed imaging approaches, particularly multiplexed Fluorescence in situ hybridization methods that enabled “chromatin tracing.” Extensions of these methods are now combining spatial information of dozens to thousands of genomic loci with the localization of nuclear features such as the nucleolus, nuclear speckles, or even histone modifications, creating the fast-moving field of “spatial genomics.” As our view of genome organization shifts the focus from ensemble to single-cell, new insights to fundamental questions begin to emerge.
Fil: Cardozo Gizzi, Andres Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Grupo Vinculado Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui - Cimetsa | Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Grupo Vinculado Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui - Cimetsa | Instituto de Investigación Médica Mercedes y Martín Ferreyra. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Grupo Vinculado Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui - Cimetsa; Argentina. Instituto Universitario de Ciencias Biomédicas de Córdoba; Argentina
Materia
CHROMATIN 3D ARCHITECTURE
CHROMOSOME CONFORMATION
FLUORESCENCE IN SITU CELL HYBRIDIZATION (FISH)
GENOME ORGANIZATION
OLIGOPAINT
STOCHASTICITY
TOPOLOGICALLY ASSOCIATED DOMAIN (TAD)
TRANSCRIPTIONAL REGULATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/149934

id CONICETDig_de10ac063941c39164659a05cbb71017
oai_identifier_str oai:ri.conicet.gov.ar:11336/149934
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome OrganizationCardozo Gizzi, Andres MauricioCHROMATIN 3D ARCHITECTURECHROMOSOME CONFORMATIONFLUORESCENCE IN SITU CELL HYBRIDIZATION (FISH)GENOME ORGANIZATIONOLIGOPAINTSTOCHASTICITYTOPOLOGICALLY ASSOCIATED DOMAIN (TAD)TRANSCRIPTIONAL REGULATIONhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3The genome tridimensional (3D) organization and its role towards the regulation of key cell processes such as transcription is currently a main question in biology. Interphase chromosomes are spatially segregated into “territories,” epigenetically-defined large domains of chromatin that interact to form “compartments” with common transcriptional status, and insulator-flanked domains called “topologically associating domains” (TADs). Moreover, chromatin organizes around nuclear structures such as lamina, speckles, or the nucleolus to acquire a higher-order genome organization. Due to recent technological advances, the different hierarchies are being solved. Particularly, advances in microscopy technologies are shedding light on the genome structure at multiple levels. Intriguingly, more and more reports point to high variability and stochasticity at the single-cell level. However, the functional consequences of such variability in genome conformation are still unsolved. Here, I will discuss the implication of the cell-to-cell heterogeneity at the different scales in the context of newly developed imaging approaches, particularly multiplexed Fluorescence in situ hybridization methods that enabled “chromatin tracing.” Extensions of these methods are now combining spatial information of dozens to thousands of genomic loci with the localization of nuclear features such as the nucleolus, nuclear speckles, or even histone modifications, creating the fast-moving field of “spatial genomics.” As our view of genome organization shifts the focus from ensemble to single-cell, new insights to fundamental questions begin to emerge.Fil: Cardozo Gizzi, Andres Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Grupo Vinculado Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui - Cimetsa | Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Grupo Vinculado Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui - Cimetsa | Instituto de Investigación Médica Mercedes y Martín Ferreyra. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Grupo Vinculado Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui - Cimetsa; Argentina. Instituto Universitario de Ciencias Biomédicas de Córdoba; ArgentinaFrontiers Media2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/149934Cardozo Gizzi, Andres Mauricio; A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization; Frontiers Media; Frontiers in Genetics; 12; 11-2021; 1-91664-8021CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fgene.2021.780822/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fgene.2021.780822info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:28Zoai:ri.conicet.gov.ar:11336/149934instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:29.145CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization
title A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization
spellingShingle A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization
Cardozo Gizzi, Andres Mauricio
CHROMATIN 3D ARCHITECTURE
CHROMOSOME CONFORMATION
FLUORESCENCE IN SITU CELL HYBRIDIZATION (FISH)
GENOME ORGANIZATION
OLIGOPAINT
STOCHASTICITY
TOPOLOGICALLY ASSOCIATED DOMAIN (TAD)
TRANSCRIPTIONAL REGULATION
title_short A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization
title_full A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization
title_fullStr A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization
title_full_unstemmed A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization
title_sort A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization
dc.creator.none.fl_str_mv Cardozo Gizzi, Andres Mauricio
author Cardozo Gizzi, Andres Mauricio
author_facet Cardozo Gizzi, Andres Mauricio
author_role author
dc.subject.none.fl_str_mv CHROMATIN 3D ARCHITECTURE
CHROMOSOME CONFORMATION
FLUORESCENCE IN SITU CELL HYBRIDIZATION (FISH)
GENOME ORGANIZATION
OLIGOPAINT
STOCHASTICITY
TOPOLOGICALLY ASSOCIATED DOMAIN (TAD)
TRANSCRIPTIONAL REGULATION
topic CHROMATIN 3D ARCHITECTURE
CHROMOSOME CONFORMATION
FLUORESCENCE IN SITU CELL HYBRIDIZATION (FISH)
GENOME ORGANIZATION
OLIGOPAINT
STOCHASTICITY
TOPOLOGICALLY ASSOCIATED DOMAIN (TAD)
TRANSCRIPTIONAL REGULATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv The genome tridimensional (3D) organization and its role towards the regulation of key cell processes such as transcription is currently a main question in biology. Interphase chromosomes are spatially segregated into “territories,” epigenetically-defined large domains of chromatin that interact to form “compartments” with common transcriptional status, and insulator-flanked domains called “topologically associating domains” (TADs). Moreover, chromatin organizes around nuclear structures such as lamina, speckles, or the nucleolus to acquire a higher-order genome organization. Due to recent technological advances, the different hierarchies are being solved. Particularly, advances in microscopy technologies are shedding light on the genome structure at multiple levels. Intriguingly, more and more reports point to high variability and stochasticity at the single-cell level. However, the functional consequences of such variability in genome conformation are still unsolved. Here, I will discuss the implication of the cell-to-cell heterogeneity at the different scales in the context of newly developed imaging approaches, particularly multiplexed Fluorescence in situ hybridization methods that enabled “chromatin tracing.” Extensions of these methods are now combining spatial information of dozens to thousands of genomic loci with the localization of nuclear features such as the nucleolus, nuclear speckles, or even histone modifications, creating the fast-moving field of “spatial genomics.” As our view of genome organization shifts the focus from ensemble to single-cell, new insights to fundamental questions begin to emerge.
Fil: Cardozo Gizzi, Andres Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Grupo Vinculado Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui - Cimetsa | Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Grupo Vinculado Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui - Cimetsa | Instituto de Investigación Médica Mercedes y Martín Ferreyra. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Grupo Vinculado Centro de Investigación en Medicina Traslacional Severo R. Amuchástegui - Cimetsa; Argentina. Instituto Universitario de Ciencias Biomédicas de Córdoba; Argentina
description The genome tridimensional (3D) organization and its role towards the regulation of key cell processes such as transcription is currently a main question in biology. Interphase chromosomes are spatially segregated into “territories,” epigenetically-defined large domains of chromatin that interact to form “compartments” with common transcriptional status, and insulator-flanked domains called “topologically associating domains” (TADs). Moreover, chromatin organizes around nuclear structures such as lamina, speckles, or the nucleolus to acquire a higher-order genome organization. Due to recent technological advances, the different hierarchies are being solved. Particularly, advances in microscopy technologies are shedding light on the genome structure at multiple levels. Intriguingly, more and more reports point to high variability and stochasticity at the single-cell level. However, the functional consequences of such variability in genome conformation are still unsolved. Here, I will discuss the implication of the cell-to-cell heterogeneity at the different scales in the context of newly developed imaging approaches, particularly multiplexed Fluorescence in situ hybridization methods that enabled “chromatin tracing.” Extensions of these methods are now combining spatial information of dozens to thousands of genomic loci with the localization of nuclear features such as the nucleolus, nuclear speckles, or even histone modifications, creating the fast-moving field of “spatial genomics.” As our view of genome organization shifts the focus from ensemble to single-cell, new insights to fundamental questions begin to emerge.
publishDate 2021
dc.date.none.fl_str_mv 2021-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/149934
Cardozo Gizzi, Andres Mauricio; A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization; Frontiers Media; Frontiers in Genetics; 12; 11-2021; 1-9
1664-8021
CONICET Digital
CONICET
url http://hdl.handle.net/11336/149934
identifier_str_mv Cardozo Gizzi, Andres Mauricio; A Shift in Paradigms: Spatial Genomics Approaches to Reveal Single-Cell Principles of Genome Organization; Frontiers Media; Frontiers in Genetics; 12; 11-2021; 1-9
1664-8021
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fgene.2021.780822/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/fgene.2021.780822
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613144578621440
score 13.070432