Ionic liquid aqueous solutions under nanoconfinement

Autores
Rodriguez, Javier; Elola, Maria Dolores; Laria, Daniel Hector
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We extend our previous molecular dynamics analysis of confined aqueous electrolytes within cylindrical hydrophobic pores of nanometric dimensions [Videla et al. J. Chem. Phys.2011, 135, 104503] to the case of room temperature ionic liquid (RTIL) solutions, with concentrations close to c ∼ 1 M. Equilibrium and dynamical characteristics of two imidazolium-based RTILs, differing in the hydrophobicity of the corresponding anionic species, were considered. The solutions within the pore were modeled in contact with "bulk-like" reservoirs, which served as reference systems to gauge the magnitude of the modifications observed in the global densities and in the transport coefficients. The density fields associated to the ionic species present a marked enhancement near the pore walls; this leads to increments of the global RTIL concentration within the pores, which are intermediate between 2 and 3 times the ones observed in the bulk reservoirs. These modifications are more marked in solutions containing more hydrophobic anionic species. In both cases, selective adsorption of imidazolium groups at the pore walls prevails; these wall-solvation states are characterized by a parallel orientation of the imidazolium ring, with respect to the pore surface. Mass and charge transport were also investigated. The segregation of the ionic species towards the pore wall promotes a sharp drop in the individual ionic diffusion coefficients. Nonuniform trends in the modifications of the ionic conductivity were found. Our results show that charge transport is the result of a complex interplay between competing effects involving modifications in the local concentrations, retardations in the ionic mobility, and dynamical cross-correlations, as well. A physical interpretation of the latter effects is provided in terms of the differences in the spatial correlations of the ionic species within the interior of the pore. © 2012 American Chemical Society.
Fil: Rodriguez, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina
Fil: Elola, Maria Dolores. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Laria, Daniel Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Materia
Ionic Liquids
Confinement
Molecular Dynamics
Diffusion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/67850

id CONICETDig_dd76cd14df101ad5b3f305aa8e8c4140
oai_identifier_str oai:ri.conicet.gov.ar:11336/67850
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ionic liquid aqueous solutions under nanoconfinementRodriguez, JavierElola, Maria DoloresLaria, Daniel HectorIonic LiquidsConfinementMolecular DynamicsDiffusionhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1We extend our previous molecular dynamics analysis of confined aqueous electrolytes within cylindrical hydrophobic pores of nanometric dimensions [Videla et al. J. Chem. Phys.2011, 135, 104503] to the case of room temperature ionic liquid (RTIL) solutions, with concentrations close to c ∼ 1 M. Equilibrium and dynamical characteristics of two imidazolium-based RTILs, differing in the hydrophobicity of the corresponding anionic species, were considered. The solutions within the pore were modeled in contact with "bulk-like" reservoirs, which served as reference systems to gauge the magnitude of the modifications observed in the global densities and in the transport coefficients. The density fields associated to the ionic species present a marked enhancement near the pore walls; this leads to increments of the global RTIL concentration within the pores, which are intermediate between 2 and 3 times the ones observed in the bulk reservoirs. These modifications are more marked in solutions containing more hydrophobic anionic species. In both cases, selective adsorption of imidazolium groups at the pore walls prevails; these wall-solvation states are characterized by a parallel orientation of the imidazolium ring, with respect to the pore surface. Mass and charge transport were also investigated. The segregation of the ionic species towards the pore wall promotes a sharp drop in the individual ionic diffusion coefficients. Nonuniform trends in the modifications of the ionic conductivity were found. Our results show that charge transport is the result of a complex interplay between competing effects involving modifications in the local concentrations, retardations in the ionic mobility, and dynamical cross-correlations, as well. A physical interpretation of the latter effects is provided in terms of the differences in the spatial correlations of the ionic species within the interior of the pore. © 2012 American Chemical Society.Fil: Rodriguez, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Elola, Maria Dolores. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Laria, Daniel Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaAmerican Chemical Society2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67850Rodriguez, Javier; Elola, Maria Dolores; Laria, Daniel Hector; Ionic liquid aqueous solutions under nanoconfinement; American Chemical Society; Journal of Physical Chemistry C; 116; 9; 3-2012; 5394-54001932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/jp211101ainfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/jp211101ainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:42Zoai:ri.conicet.gov.ar:11336/67850instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:42.743CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ionic liquid aqueous solutions under nanoconfinement
title Ionic liquid aqueous solutions under nanoconfinement
spellingShingle Ionic liquid aqueous solutions under nanoconfinement
Rodriguez, Javier
Ionic Liquids
Confinement
Molecular Dynamics
Diffusion
title_short Ionic liquid aqueous solutions under nanoconfinement
title_full Ionic liquid aqueous solutions under nanoconfinement
title_fullStr Ionic liquid aqueous solutions under nanoconfinement
title_full_unstemmed Ionic liquid aqueous solutions under nanoconfinement
title_sort Ionic liquid aqueous solutions under nanoconfinement
dc.creator.none.fl_str_mv Rodriguez, Javier
Elola, Maria Dolores
Laria, Daniel Hector
author Rodriguez, Javier
author_facet Rodriguez, Javier
Elola, Maria Dolores
Laria, Daniel Hector
author_role author
author2 Elola, Maria Dolores
Laria, Daniel Hector
author2_role author
author
dc.subject.none.fl_str_mv Ionic Liquids
Confinement
Molecular Dynamics
Diffusion
topic Ionic Liquids
Confinement
Molecular Dynamics
Diffusion
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We extend our previous molecular dynamics analysis of confined aqueous electrolytes within cylindrical hydrophobic pores of nanometric dimensions [Videla et al. J. Chem. Phys.2011, 135, 104503] to the case of room temperature ionic liquid (RTIL) solutions, with concentrations close to c ∼ 1 M. Equilibrium and dynamical characteristics of two imidazolium-based RTILs, differing in the hydrophobicity of the corresponding anionic species, were considered. The solutions within the pore were modeled in contact with "bulk-like" reservoirs, which served as reference systems to gauge the magnitude of the modifications observed in the global densities and in the transport coefficients. The density fields associated to the ionic species present a marked enhancement near the pore walls; this leads to increments of the global RTIL concentration within the pores, which are intermediate between 2 and 3 times the ones observed in the bulk reservoirs. These modifications are more marked in solutions containing more hydrophobic anionic species. In both cases, selective adsorption of imidazolium groups at the pore walls prevails; these wall-solvation states are characterized by a parallel orientation of the imidazolium ring, with respect to the pore surface. Mass and charge transport were also investigated. The segregation of the ionic species towards the pore wall promotes a sharp drop in the individual ionic diffusion coefficients. Nonuniform trends in the modifications of the ionic conductivity were found. Our results show that charge transport is the result of a complex interplay between competing effects involving modifications in the local concentrations, retardations in the ionic mobility, and dynamical cross-correlations, as well. A physical interpretation of the latter effects is provided in terms of the differences in the spatial correlations of the ionic species within the interior of the pore. © 2012 American Chemical Society.
Fil: Rodriguez, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina
Fil: Elola, Maria Dolores. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina
Fil: Laria, Daniel Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
description We extend our previous molecular dynamics analysis of confined aqueous electrolytes within cylindrical hydrophobic pores of nanometric dimensions [Videla et al. J. Chem. Phys.2011, 135, 104503] to the case of room temperature ionic liquid (RTIL) solutions, with concentrations close to c ∼ 1 M. Equilibrium and dynamical characteristics of two imidazolium-based RTILs, differing in the hydrophobicity of the corresponding anionic species, were considered. The solutions within the pore were modeled in contact with "bulk-like" reservoirs, which served as reference systems to gauge the magnitude of the modifications observed in the global densities and in the transport coefficients. The density fields associated to the ionic species present a marked enhancement near the pore walls; this leads to increments of the global RTIL concentration within the pores, which are intermediate between 2 and 3 times the ones observed in the bulk reservoirs. These modifications are more marked in solutions containing more hydrophobic anionic species. In both cases, selective adsorption of imidazolium groups at the pore walls prevails; these wall-solvation states are characterized by a parallel orientation of the imidazolium ring, with respect to the pore surface. Mass and charge transport were also investigated. The segregation of the ionic species towards the pore wall promotes a sharp drop in the individual ionic diffusion coefficients. Nonuniform trends in the modifications of the ionic conductivity were found. Our results show that charge transport is the result of a complex interplay between competing effects involving modifications in the local concentrations, retardations in the ionic mobility, and dynamical cross-correlations, as well. A physical interpretation of the latter effects is provided in terms of the differences in the spatial correlations of the ionic species within the interior of the pore. © 2012 American Chemical Society.
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/67850
Rodriguez, Javier; Elola, Maria Dolores; Laria, Daniel Hector; Ionic liquid aqueous solutions under nanoconfinement; American Chemical Society; Journal of Physical Chemistry C; 116; 9; 3-2012; 5394-5400
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/67850
identifier_str_mv Rodriguez, Javier; Elola, Maria Dolores; Laria, Daniel Hector; Ionic liquid aqueous solutions under nanoconfinement; American Chemical Society; Journal of Physical Chemistry C; 116; 9; 3-2012; 5394-5400
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/jp211101a
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/jp211101a
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269478852755456
score 13.13397