A semi-continuum model for fluid imbibition under nanoconfinement: Assessing fluid velocity jumps and meniscus acceleration

Autores
Cencha, Luisa Guadalupe; Urteaga, Raul; Berli, Claudio Luis Alberto
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fluid imbibition under nanoconfinement exhibits dynamics that significantly deviate from classical continuum predictions, posing unique challenges in understanding nanoscale transport phenomena. This study presents a semi-continuum model for capillary imbibition of simple fluids in nanochannels, addressing the limitations of traditional frameworks like the Lucas–Washburn model. By incorporating sub-continuum effects—such as precursor films and fluid slippage at the walls—into continuum equations, our model captures molecular-scale phenomena that dominate in confined spaces. Key findings include the prediction of fluid velocity jumps and meniscus acceleration, driven by the interplay between confinement and the precursor film´s influence on meniscus curvature and fluid distribution. These anomalies, which contradict classical expectations, are validated against molecular dynamics simulations from the literature. The model offers a robust framework for interpreting nanoscale fluid behavior.
Fil: Cencha, Luisa Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
Flow in confinement
Capillarity
Nanoflows
Liquids in confinement
Nivel de accesibilidad
acceso embargado
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/275226

id CONICETDig_5791648abb98992598523e7c9edded12
oai_identifier_str oai:ri.conicet.gov.ar:11336/275226
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A semi-continuum model for fluid imbibition under nanoconfinement: Assessing fluid velocity jumps and meniscus accelerationCencha, Luisa GuadalupeUrteaga, RaulBerli, Claudio Luis AlbertoFlow in confinementCapillarityNanoflowsLiquids in confinementhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Fluid imbibition under nanoconfinement exhibits dynamics that significantly deviate from classical continuum predictions, posing unique challenges in understanding nanoscale transport phenomena. This study presents a semi-continuum model for capillary imbibition of simple fluids in nanochannels, addressing the limitations of traditional frameworks like the Lucas–Washburn model. By incorporating sub-continuum effects—such as precursor films and fluid slippage at the walls—into continuum equations, our model captures molecular-scale phenomena that dominate in confined spaces. Key findings include the prediction of fluid velocity jumps and meniscus acceleration, driven by the interplay between confinement and the precursor film´s influence on meniscus curvature and fluid distribution. These anomalies, which contradict classical expectations, are validated against molecular dynamics simulations from the literature. The model offers a robust framework for interpreting nanoscale fluid behavior.Fil: Cencha, Luisa Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; ArgentinaFil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaAmerican Institute of Physics2025-08info:eu-repo/date/embargoEnd/2026-02-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275226Cencha, Luisa Guadalupe; Urteaga, Raul; Berli, Claudio Luis Alberto; A semi-continuum model for fluid imbibition under nanoconfinement: Assessing fluid velocity jumps and meniscus acceleration; American Institute of Physics; Physics of Fluids; 37; 8; 8-2025; 1-231070-6631CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/pof/article/37/8/082060/3360550/A-semi-continuum-model-for-fluid-imbibition-underinfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0291042info:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T08:54:36Zoai:ri.conicet.gov.ar:11336/275226instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 08:54:36.495CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A semi-continuum model for fluid imbibition under nanoconfinement: Assessing fluid velocity jumps and meniscus acceleration
title A semi-continuum model for fluid imbibition under nanoconfinement: Assessing fluid velocity jumps and meniscus acceleration
spellingShingle A semi-continuum model for fluid imbibition under nanoconfinement: Assessing fluid velocity jumps and meniscus acceleration
Cencha, Luisa Guadalupe
Flow in confinement
Capillarity
Nanoflows
Liquids in confinement
title_short A semi-continuum model for fluid imbibition under nanoconfinement: Assessing fluid velocity jumps and meniscus acceleration
title_full A semi-continuum model for fluid imbibition under nanoconfinement: Assessing fluid velocity jumps and meniscus acceleration
title_fullStr A semi-continuum model for fluid imbibition under nanoconfinement: Assessing fluid velocity jumps and meniscus acceleration
title_full_unstemmed A semi-continuum model for fluid imbibition under nanoconfinement: Assessing fluid velocity jumps and meniscus acceleration
title_sort A semi-continuum model for fluid imbibition under nanoconfinement: Assessing fluid velocity jumps and meniscus acceleration
dc.creator.none.fl_str_mv Cencha, Luisa Guadalupe
Urteaga, Raul
Berli, Claudio Luis Alberto
author Cencha, Luisa Guadalupe
author_facet Cencha, Luisa Guadalupe
Urteaga, Raul
Berli, Claudio Luis Alberto
author_role author
author2 Urteaga, Raul
Berli, Claudio Luis Alberto
author2_role author
author
dc.subject.none.fl_str_mv Flow in confinement
Capillarity
Nanoflows
Liquids in confinement
topic Flow in confinement
Capillarity
Nanoflows
Liquids in confinement
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Fluid imbibition under nanoconfinement exhibits dynamics that significantly deviate from classical continuum predictions, posing unique challenges in understanding nanoscale transport phenomena. This study presents a semi-continuum model for capillary imbibition of simple fluids in nanochannels, addressing the limitations of traditional frameworks like the Lucas–Washburn model. By incorporating sub-continuum effects—such as precursor films and fluid slippage at the walls—into continuum equations, our model captures molecular-scale phenomena that dominate in confined spaces. Key findings include the prediction of fluid velocity jumps and meniscus acceleration, driven by the interplay between confinement and the precursor film´s influence on meniscus curvature and fluid distribution. These anomalies, which contradict classical expectations, are validated against molecular dynamics simulations from the literature. The model offers a robust framework for interpreting nanoscale fluid behavior.
Fil: Cencha, Luisa Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Urteaga, Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Física del Litoral. Universidad Nacional del Litoral. Instituto de Física del Litoral; Argentina
Fil: Berli, Claudio Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description Fluid imbibition under nanoconfinement exhibits dynamics that significantly deviate from classical continuum predictions, posing unique challenges in understanding nanoscale transport phenomena. This study presents a semi-continuum model for capillary imbibition of simple fluids in nanochannels, addressing the limitations of traditional frameworks like the Lucas–Washburn model. By incorporating sub-continuum effects—such as precursor films and fluid slippage at the walls—into continuum equations, our model captures molecular-scale phenomena that dominate in confined spaces. Key findings include the prediction of fluid velocity jumps and meniscus acceleration, driven by the interplay between confinement and the precursor film´s influence on meniscus curvature and fluid distribution. These anomalies, which contradict classical expectations, are validated against molecular dynamics simulations from the literature. The model offers a robust framework for interpreting nanoscale fluid behavior.
publishDate 2025
dc.date.none.fl_str_mv 2025-08
info:eu-repo/date/embargoEnd/2026-02-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/275226
Cencha, Luisa Guadalupe; Urteaga, Raul; Berli, Claudio Luis Alberto; A semi-continuum model for fluid imbibition under nanoconfinement: Assessing fluid velocity jumps and meniscus acceleration; American Institute of Physics; Physics of Fluids; 37; 8; 8-2025; 1-23
1070-6631
CONICET Digital
CONICET
url http://hdl.handle.net/11336/275226
identifier_str_mv Cencha, Luisa Guadalupe; Urteaga, Raul; Berli, Claudio Luis Alberto; A semi-continuum model for fluid imbibition under nanoconfinement: Assessing fluid velocity jumps and meniscus acceleration; American Institute of Physics; Physics of Fluids; 37; 8; 8-2025; 1-23
1070-6631
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/pof/article/37/8/082060/3360550/A-semi-continuum-model-for-fluid-imbibition-under
info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0291042
dc.rights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1850505050042925056
score 13.214268