Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale

Autores
Bäckström, Gloria; Galassi, Mariel Elisa; Tilly, N.; Ahnesjö, A.; Fernandez Varea, J. M.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H+, He2+, and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks. Methods:The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. [Electron inelastic scattering cross sections in liquid water, Radiat. Phys. Chem. 53, 1-18 (1999); Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water, Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales. Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C6+ ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H+. On average clusters of two to three EDs for 1 MeV/u H+ and clusters of four to five EDs for 1 MeV/u C6+ could be expected for a modeling double strand break distance of 3.4 nm.
Fil: Bäckström, Gloria. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; Suecia
Fil: Galassi, Mariel Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Fil: Tilly, N.. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; Suecia
Fil: Ahnesjö, A.. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; Suecia
Fil: Fernandez Varea, J. M.. Universidad de Barcelona. Facultad de Física; España
Materia
Ions
Microdosimetry
Monte Carlo
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5948

id CONICETDig_dd4b40dcd4ae8c4d69eddbcfd989b556
oai_identifier_str oai:ri.conicet.gov.ar:11336/5948
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scaleBäckström, GloriaGalassi, Mariel ElisaTilly, N.Ahnesjö, A.Fernandez Varea, J. M.IonsMicrodosimetryMonte Carlohttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H+, He2+, and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks. Methods:The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. [Electron inelastic scattering cross sections in liquid water, Radiat. Phys. Chem. 53, 1-18 (1999); Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water, Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales. Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C6+ ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H+. On average clusters of two to three EDs for 1 MeV/u H+ and clusters of four to five EDs for 1 MeV/u C6+ could be expected for a modeling double strand break distance of 3.4 nm.Fil: Bäckström, Gloria. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; SueciaFil: Galassi, Mariel Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Tilly, N.. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; SueciaFil: Ahnesjö, A.. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; SueciaFil: Fernandez Varea, J. M.. Universidad de Barcelona. Facultad de Física; EspañaAmerican Institute of Physics2013-05-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5948Bäckström, Gloria; Galassi, Mariel Elisa; Tilly, N.; Ahnesjö, A.; Fernandez Varea, J. M.; Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale; American Institute of Physics; Medical Physics; 40; 6; 10-5-2013; 064101-0641010094-2405enginfo:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aapm/journal/medphys/40/6/10.1118/1.4803464info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1118/1.4803464info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:45:57Zoai:ri.conicet.gov.ar:11336/5948instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:45:57.675CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale
title Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale
spellingShingle Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale
Bäckström, Gloria
Ions
Microdosimetry
Monte Carlo
title_short Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale
title_full Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale
title_fullStr Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale
title_full_unstemmed Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale
title_sort Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale
dc.creator.none.fl_str_mv Bäckström, Gloria
Galassi, Mariel Elisa
Tilly, N.
Ahnesjö, A.
Fernandez Varea, J. M.
author Bäckström, Gloria
author_facet Bäckström, Gloria
Galassi, Mariel Elisa
Tilly, N.
Ahnesjö, A.
Fernandez Varea, J. M.
author_role author
author2 Galassi, Mariel Elisa
Tilly, N.
Ahnesjö, A.
Fernandez Varea, J. M.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ions
Microdosimetry
Monte Carlo
topic Ions
Microdosimetry
Monte Carlo
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H+, He2+, and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks. Methods:The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. [Electron inelastic scattering cross sections in liquid water, Radiat. Phys. Chem. 53, 1-18 (1999); Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water, Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales. Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C6+ ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H+. On average clusters of two to three EDs for 1 MeV/u H+ and clusters of four to five EDs for 1 MeV/u C6+ could be expected for a modeling double strand break distance of 3.4 nm.
Fil: Bäckström, Gloria. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; Suecia
Fil: Galassi, Mariel Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Fil: Tilly, N.. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; Suecia
Fil: Ahnesjö, A.. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; Suecia
Fil: Fernandez Varea, J. M.. Universidad de Barcelona. Facultad de Física; España
description The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H+, He2+, and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks. Methods:The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. [Electron inelastic scattering cross sections in liquid water, Radiat. Phys. Chem. 53, 1-18 (1999); Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water, Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales. Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C6+ ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H+. On average clusters of two to three EDs for 1 MeV/u H+ and clusters of four to five EDs for 1 MeV/u C6+ could be expected for a modeling double strand break distance of 3.4 nm.
publishDate 2013
dc.date.none.fl_str_mv 2013-05-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5948
Bäckström, Gloria; Galassi, Mariel Elisa; Tilly, N.; Ahnesjö, A.; Fernandez Varea, J. M.; Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale; American Institute of Physics; Medical Physics; 40; 6; 10-5-2013; 064101-064101
0094-2405
url http://hdl.handle.net/11336/5948
identifier_str_mv Bäckström, Gloria; Galassi, Mariel Elisa; Tilly, N.; Ahnesjö, A.; Fernandez Varea, J. M.; Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale; American Institute of Physics; Medical Physics; 40; 6; 10-5-2013; 064101-064101
0094-2405
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aapm/journal/medphys/40/6/10.1118/1.4803464
info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1118/1.4803464
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782158815887360
score 12.982451