Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale
- Autores
- Bäckström, Gloria; Galassi, Mariel Elisa; Tilly, N.; Ahnesjö, A.; Fernandez Varea, J. M.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H+, He2+, and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks. Methods:The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. [Electron inelastic scattering cross sections in liquid water, Radiat. Phys. Chem. 53, 1-18 (1999); Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water, Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales. Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C6+ ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H+. On average clusters of two to three EDs for 1 MeV/u H+ and clusters of four to five EDs for 1 MeV/u C6+ could be expected for a modeling double strand break distance of 3.4 nm.
Fil: Bäckström, Gloria. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; Suecia
Fil: Galassi, Mariel Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina
Fil: Tilly, N.. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; Suecia
Fil: Ahnesjö, A.. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; Suecia
Fil: Fernandez Varea, J. M.. Universidad de Barcelona. Facultad de Física; España - Materia
-
Ions
Microdosimetry
Monte Carlo - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5948
Ver los metadatos del registro completo
| id |
CONICETDig_dd4b40dcd4ae8c4d69eddbcfd989b556 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5948 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scaleBäckström, GloriaGalassi, Mariel ElisaTilly, N.Ahnesjö, A.Fernandez Varea, J. M.IonsMicrodosimetryMonte Carlohttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H+, He2+, and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks. Methods:The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. [Electron inelastic scattering cross sections in liquid water, Radiat. Phys. Chem. 53, 1-18 (1999); Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water, Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales. Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C6+ ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H+. On average clusters of two to three EDs for 1 MeV/u H+ and clusters of four to five EDs for 1 MeV/u C6+ could be expected for a modeling double strand break distance of 3.4 nm.Fil: Bäckström, Gloria. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; SueciaFil: Galassi, Mariel Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Tilly, N.. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; SueciaFil: Ahnesjö, A.. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; SueciaFil: Fernandez Varea, J. M.. Universidad de Barcelona. Facultad de Física; EspañaAmerican Institute of Physics2013-05-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5948Bäckström, Gloria; Galassi, Mariel Elisa; Tilly, N.; Ahnesjö, A.; Fernandez Varea, J. M.; Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale; American Institute of Physics; Medical Physics; 40; 6; 10-5-2013; 064101-0641010094-2405enginfo:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aapm/journal/medphys/40/6/10.1118/1.4803464info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1118/1.4803464info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:45:57Zoai:ri.conicet.gov.ar:11336/5948instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:45:57.675CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale |
| title |
Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale |
| spellingShingle |
Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale Bäckström, Gloria Ions Microdosimetry Monte Carlo |
| title_short |
Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale |
| title_full |
Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale |
| title_fullStr |
Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale |
| title_full_unstemmed |
Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale |
| title_sort |
Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale |
| dc.creator.none.fl_str_mv |
Bäckström, Gloria Galassi, Mariel Elisa Tilly, N. Ahnesjö, A. Fernandez Varea, J. M. |
| author |
Bäckström, Gloria |
| author_facet |
Bäckström, Gloria Galassi, Mariel Elisa Tilly, N. Ahnesjö, A. Fernandez Varea, J. M. |
| author_role |
author |
| author2 |
Galassi, Mariel Elisa Tilly, N. Ahnesjö, A. Fernandez Varea, J. M. |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
Ions Microdosimetry Monte Carlo |
| topic |
Ions Microdosimetry Monte Carlo |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H+, He2+, and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks. Methods:The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. [Electron inelastic scattering cross sections in liquid water, Radiat. Phys. Chem. 53, 1-18 (1999); Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water, Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales. Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C6+ ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H+. On average clusters of two to three EDs for 1 MeV/u H+ and clusters of four to five EDs for 1 MeV/u C6+ could be expected for a modeling double strand break distance of 3.4 nm. Fil: Bäckström, Gloria. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; Suecia Fil: Galassi, Mariel Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina Fil: Tilly, N.. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; Suecia Fil: Ahnesjö, A.. Uppsala University. Section of Medical Radiation Physics. Department of Radiology, Oncology and Radiation Science; Suecia Fil: Fernandez Varea, J. M.. Universidad de Barcelona. Facultad de Física; España |
| description |
The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H+, He2+, and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks. Methods:The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. [Electron inelastic scattering cross sections in liquid water, Radiat. Phys. Chem. 53, 1-18 (1999); Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water, Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales. Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C6+ ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H+. On average clusters of two to three EDs for 1 MeV/u H+ and clusters of four to five EDs for 1 MeV/u C6+ could be expected for a modeling double strand break distance of 3.4 nm. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-05-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5948 Bäckström, Gloria; Galassi, Mariel Elisa; Tilly, N.; Ahnesjö, A.; Fernandez Varea, J. M.; Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale; American Institute of Physics; Medical Physics; 40; 6; 10-5-2013; 064101-064101 0094-2405 |
| url |
http://hdl.handle.net/11336/5948 |
| identifier_str_mv |
Bäckström, Gloria; Galassi, Mariel Elisa; Tilly, N.; Ahnesjö, A.; Fernandez Varea, J. M.; Track structure of protons and other light ions in liquid water: Applications of the LIonTrack code at the nanometer scale; American Institute of Physics; Medical Physics; 40; 6; 10-5-2013; 064101-064101 0094-2405 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aapm/journal/medphys/40/6/10.1118/1.4803464 info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1118/1.4803464 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Institute of Physics |
| publisher.none.fl_str_mv |
American Institute of Physics |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782158815887360 |
| score |
12.982451 |