Agricultural acceleration of soil carbonate weathering

Autores
Kim, John H.; Jobbagy Gampel, Esteban Gabriel; Richter, Daniel D.; Trumbore, Susan E.; Jackson, Robert B.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Soil carbonates (i.e., soil inorganic carbon or SIC) represent more than a quarter of the terrestrial carbon pool and are often considered to be relatively stable, with fluxes significant only on geologic timescales. However, given the importance of climatic water balance on SIC accumulation, we tested the hypothesis that increased soil water storage and transport resulting from cultivation may enhance dissolution of SIC, altering their local stock at decadal timescales. We compared SIC storage to 7.3 m depth in eight sites, each having paired plots of native vegetation and rain-fed croplands, and half the sites having additional irrigated cropland plots. Rain-fed and irrigated croplands had 328 and 730 Mg C/ha less SIC storage, respectively, compared to their native vegetation (grassland or woodland) pairs, and irrigated croplands had 402 Mg C/ha less than their rain-fed pairs (p <.0001). SIC contents were negatively correlated with estimated groundwater recharge, suggesting that dissolution and leaching may be responsible for SIC losses observed. Under croplands, the remaining SIC had more modern radiocarbon and a δ13C composition that was closer to crop inputs than under native vegetation, suggesting that cultivation has led to faster turnover and incorporation of recent crop carbon into the SIC pool (p <.0001). The losses occurred just 30–100 years after land-use changes, indicating SIC stocks that were stable for millennia can rapidly adjust to increased soil water flows. Large SIC losses (194–242 Mg C/ha) also occurred below 4.9 m deep under irrigated croplands, with SIC losses lagging behind the downward-advancing wetting front by ~30 years, suggesting that even deep SIC were affected. These observations suggest that the vertical distribution of SIC in dry ecosystems is dynamic on decadal timescales, highlighting its potential role as a carbon sink or source to be examined in the context of land use and climate change.
Fil: Kim, John H.. Max Planck Institute For Biogeochemistry; Alemania
Fil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Richter, Daniel D.. University of Duke; Estados Unidos
Fil: Trumbore, Susan E.. Max Planck Institute For Biogeochemistry; Alemania
Fil: Jackson, Robert B.. University of Stanford; Estados Unidos
Materia
14C
CARBON SEQUESTRATION
CLIMATE ENGINEERING
CROP CULTIVATION
DEEP DRAINAGE
DRYLAND
PRECIPITATION GRADIENT
SOIL INORGANIC CARBON STOCK
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/183159

id CONICETDig_dd271dad1a2cf3aeef86dea9bb1255cb
oai_identifier_str oai:ri.conicet.gov.ar:11336/183159
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Agricultural acceleration of soil carbonate weatheringKim, John H.Jobbagy Gampel, Esteban GabrielRichter, Daniel D.Trumbore, Susan E.Jackson, Robert B.14CCARBON SEQUESTRATIONCLIMATE ENGINEERINGCROP CULTIVATIONDEEP DRAINAGEDRYLANDPRECIPITATION GRADIENTSOIL INORGANIC CARBON STOCKhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Soil carbonates (i.e., soil inorganic carbon or SIC) represent more than a quarter of the terrestrial carbon pool and are often considered to be relatively stable, with fluxes significant only on geologic timescales. However, given the importance of climatic water balance on SIC accumulation, we tested the hypothesis that increased soil water storage and transport resulting from cultivation may enhance dissolution of SIC, altering their local stock at decadal timescales. We compared SIC storage to 7.3 m depth in eight sites, each having paired plots of native vegetation and rain-fed croplands, and half the sites having additional irrigated cropland plots. Rain-fed and irrigated croplands had 328 and 730 Mg C/ha less SIC storage, respectively, compared to their native vegetation (grassland or woodland) pairs, and irrigated croplands had 402 Mg C/ha less than their rain-fed pairs (p <.0001). SIC contents were negatively correlated with estimated groundwater recharge, suggesting that dissolution and leaching may be responsible for SIC losses observed. Under croplands, the remaining SIC had more modern radiocarbon and a δ13C composition that was closer to crop inputs than under native vegetation, suggesting that cultivation has led to faster turnover and incorporation of recent crop carbon into the SIC pool (p <.0001). The losses occurred just 30–100 years after land-use changes, indicating SIC stocks that were stable for millennia can rapidly adjust to increased soil water flows. Large SIC losses (194–242 Mg C/ha) also occurred below 4.9 m deep under irrigated croplands, with SIC losses lagging behind the downward-advancing wetting front by ~30 years, suggesting that even deep SIC were affected. These observations suggest that the vertical distribution of SIC in dry ecosystems is dynamic on decadal timescales, highlighting its potential role as a carbon sink or source to be examined in the context of land use and climate change.Fil: Kim, John H.. Max Planck Institute For Biogeochemistry; AlemaniaFil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Richter, Daniel D.. University of Duke; Estados UnidosFil: Trumbore, Susan E.. Max Planck Institute For Biogeochemistry; AlemaniaFil: Jackson, Robert B.. University of Stanford; Estados UnidosWiley Blackwell Publishing, Inc2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/183159Kim, John H.; Jobbagy Gampel, Esteban Gabriel; Richter, Daniel D.; Trumbore, Susan E.; Jackson, Robert B.; Agricultural acceleration of soil carbonate weathering; Wiley Blackwell Publishing, Inc; Global Change Biology; 26; 10; 10-2020; 5988-60021354-1013CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1111/gcb.15207info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:21Zoai:ri.conicet.gov.ar:11336/183159instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:21.692CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Agricultural acceleration of soil carbonate weathering
title Agricultural acceleration of soil carbonate weathering
spellingShingle Agricultural acceleration of soil carbonate weathering
Kim, John H.
14C
CARBON SEQUESTRATION
CLIMATE ENGINEERING
CROP CULTIVATION
DEEP DRAINAGE
DRYLAND
PRECIPITATION GRADIENT
SOIL INORGANIC CARBON STOCK
title_short Agricultural acceleration of soil carbonate weathering
title_full Agricultural acceleration of soil carbonate weathering
title_fullStr Agricultural acceleration of soil carbonate weathering
title_full_unstemmed Agricultural acceleration of soil carbonate weathering
title_sort Agricultural acceleration of soil carbonate weathering
dc.creator.none.fl_str_mv Kim, John H.
Jobbagy Gampel, Esteban Gabriel
Richter, Daniel D.
Trumbore, Susan E.
Jackson, Robert B.
author Kim, John H.
author_facet Kim, John H.
Jobbagy Gampel, Esteban Gabriel
Richter, Daniel D.
Trumbore, Susan E.
Jackson, Robert B.
author_role author
author2 Jobbagy Gampel, Esteban Gabriel
Richter, Daniel D.
Trumbore, Susan E.
Jackson, Robert B.
author2_role author
author
author
author
dc.subject.none.fl_str_mv 14C
CARBON SEQUESTRATION
CLIMATE ENGINEERING
CROP CULTIVATION
DEEP DRAINAGE
DRYLAND
PRECIPITATION GRADIENT
SOIL INORGANIC CARBON STOCK
topic 14C
CARBON SEQUESTRATION
CLIMATE ENGINEERING
CROP CULTIVATION
DEEP DRAINAGE
DRYLAND
PRECIPITATION GRADIENT
SOIL INORGANIC CARBON STOCK
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Soil carbonates (i.e., soil inorganic carbon or SIC) represent more than a quarter of the terrestrial carbon pool and are often considered to be relatively stable, with fluxes significant only on geologic timescales. However, given the importance of climatic water balance on SIC accumulation, we tested the hypothesis that increased soil water storage and transport resulting from cultivation may enhance dissolution of SIC, altering their local stock at decadal timescales. We compared SIC storage to 7.3 m depth in eight sites, each having paired plots of native vegetation and rain-fed croplands, and half the sites having additional irrigated cropland plots. Rain-fed and irrigated croplands had 328 and 730 Mg C/ha less SIC storage, respectively, compared to their native vegetation (grassland or woodland) pairs, and irrigated croplands had 402 Mg C/ha less than their rain-fed pairs (p <.0001). SIC contents were negatively correlated with estimated groundwater recharge, suggesting that dissolution and leaching may be responsible for SIC losses observed. Under croplands, the remaining SIC had more modern radiocarbon and a δ13C composition that was closer to crop inputs than under native vegetation, suggesting that cultivation has led to faster turnover and incorporation of recent crop carbon into the SIC pool (p <.0001). The losses occurred just 30–100 years after land-use changes, indicating SIC stocks that were stable for millennia can rapidly adjust to increased soil water flows. Large SIC losses (194–242 Mg C/ha) also occurred below 4.9 m deep under irrigated croplands, with SIC losses lagging behind the downward-advancing wetting front by ~30 years, suggesting that even deep SIC were affected. These observations suggest that the vertical distribution of SIC in dry ecosystems is dynamic on decadal timescales, highlighting its potential role as a carbon sink or source to be examined in the context of land use and climate change.
Fil: Kim, John H.. Max Planck Institute For Biogeochemistry; Alemania
Fil: Jobbagy Gampel, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Richter, Daniel D.. University of Duke; Estados Unidos
Fil: Trumbore, Susan E.. Max Planck Institute For Biogeochemistry; Alemania
Fil: Jackson, Robert B.. University of Stanford; Estados Unidos
description Soil carbonates (i.e., soil inorganic carbon or SIC) represent more than a quarter of the terrestrial carbon pool and are often considered to be relatively stable, with fluxes significant only on geologic timescales. However, given the importance of climatic water balance on SIC accumulation, we tested the hypothesis that increased soil water storage and transport resulting from cultivation may enhance dissolution of SIC, altering their local stock at decadal timescales. We compared SIC storage to 7.3 m depth in eight sites, each having paired plots of native vegetation and rain-fed croplands, and half the sites having additional irrigated cropland plots. Rain-fed and irrigated croplands had 328 and 730 Mg C/ha less SIC storage, respectively, compared to their native vegetation (grassland or woodland) pairs, and irrigated croplands had 402 Mg C/ha less than their rain-fed pairs (p <.0001). SIC contents were negatively correlated with estimated groundwater recharge, suggesting that dissolution and leaching may be responsible for SIC losses observed. Under croplands, the remaining SIC had more modern radiocarbon and a δ13C composition that was closer to crop inputs than under native vegetation, suggesting that cultivation has led to faster turnover and incorporation of recent crop carbon into the SIC pool (p <.0001). The losses occurred just 30–100 years after land-use changes, indicating SIC stocks that were stable for millennia can rapidly adjust to increased soil water flows. Large SIC losses (194–242 Mg C/ha) also occurred below 4.9 m deep under irrigated croplands, with SIC losses lagging behind the downward-advancing wetting front by ~30 years, suggesting that even deep SIC were affected. These observations suggest that the vertical distribution of SIC in dry ecosystems is dynamic on decadal timescales, highlighting its potential role as a carbon sink or source to be examined in the context of land use and climate change.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/183159
Kim, John H.; Jobbagy Gampel, Esteban Gabriel; Richter, Daniel D.; Trumbore, Susan E.; Jackson, Robert B.; Agricultural acceleration of soil carbonate weathering; Wiley Blackwell Publishing, Inc; Global Change Biology; 26; 10; 10-2020; 5988-6002
1354-1013
CONICET Digital
CONICET
url http://hdl.handle.net/11336/183159
identifier_str_mv Kim, John H.; Jobbagy Gampel, Esteban Gabriel; Richter, Daniel D.; Trumbore, Susan E.; Jackson, Robert B.; Agricultural acceleration of soil carbonate weathering; Wiley Blackwell Publishing, Inc; Global Change Biology; 26; 10; 10-2020; 5988-6002
1354-1013
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1111/gcb.15207
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614456306302976
score 13.070432