Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model

Autores
Montani, Hugo Santos; Zuccalli, Marcela
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the restriction to a family of second class constrained submanifolds in the cotangent bundle of a double Lie group equipped with a 2-cocycle extended symplectic form to build the corresponding Dirac brackets. It is shown that, for 2-cocycle vanishing on each isotropic subspace of the associated Manin triple, the Dirac bracket contains no traces of the cocycle. We also investigate the restriction of the left translation action of the double Lie group on its cotangent bundle, where it fails to be a canonical transformation. However, the Hamiltonian symmetry is restored on some special submanifolds. The main application is to loop groups, showing that a WZNW-type model on the double Lie group with a quadratic Hamilton function in the momentum maps associated with the left translation action on the cotangent bundle with the canonical symplectic form, restricts to a collective system on some special submanifolds. There, the Lagrangian version coincides with the so-called Poisson-Lie σ-model.
Fil: Montani, Hugo Santos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; Argentina
Fil: Zuccalli, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Materia
DIRAC METHOD ON DOUBLE LIE GROUPS
CENTRAL EXTENSIONS AND LOOP GROUPS
WZNW MODEL
POISSON-LIE SIGMA MODEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/59289

id CONICETDig_dcbb8a4155984229ba6ff13182660f4b
oai_identifier_str oai:ri.conicet.gov.ar:11336/59289
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-modelMontani, Hugo SantosZuccalli, MarcelaDIRAC METHOD ON DOUBLE LIE GROUPSCENTRAL EXTENSIONS AND LOOP GROUPSWZNW MODELPOISSON-LIE SIGMA MODELhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the restriction to a family of second class constrained submanifolds in the cotangent bundle of a double Lie group equipped with a 2-cocycle extended symplectic form to build the corresponding Dirac brackets. It is shown that, for 2-cocycle vanishing on each isotropic subspace of the associated Manin triple, the Dirac bracket contains no traces of the cocycle. We also investigate the restriction of the left translation action of the double Lie group on its cotangent bundle, where it fails to be a canonical transformation. However, the Hamiltonian symmetry is restored on some special submanifolds. The main application is to loop groups, showing that a WZNW-type model on the double Lie group with a quadratic Hamilton function in the momentum maps associated with the left translation action on the cotangent bundle with the canonical symplectic form, restricts to a collective system on some special submanifolds. There, the Lagrangian version coincides with the so-called Poisson-Lie σ-model.Fil: Montani, Hugo Santos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; ArgentinaFil: Zuccalli, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaAmerican Institute of Physics2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59289Montani, Hugo Santos; Zuccalli, Marcela; Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model; American Institute of Physics; Journal of Mathematical Physics; 55; 9; 9-2014; 1-200022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4895465info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4895465info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:55Zoai:ri.conicet.gov.ar:11336/59289instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:55.857CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model
title Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model
spellingShingle Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model
Montani, Hugo Santos
DIRAC METHOD ON DOUBLE LIE GROUPS
CENTRAL EXTENSIONS AND LOOP GROUPS
WZNW MODEL
POISSON-LIE SIGMA MODEL
title_short Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model
title_full Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model
title_fullStr Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model
title_full_unstemmed Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model
title_sort Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model
dc.creator.none.fl_str_mv Montani, Hugo Santos
Zuccalli, Marcela
author Montani, Hugo Santos
author_facet Montani, Hugo Santos
Zuccalli, Marcela
author_role author
author2 Zuccalli, Marcela
author2_role author
dc.subject.none.fl_str_mv DIRAC METHOD ON DOUBLE LIE GROUPS
CENTRAL EXTENSIONS AND LOOP GROUPS
WZNW MODEL
POISSON-LIE SIGMA MODEL
topic DIRAC METHOD ON DOUBLE LIE GROUPS
CENTRAL EXTENSIONS AND LOOP GROUPS
WZNW MODEL
POISSON-LIE SIGMA MODEL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the restriction to a family of second class constrained submanifolds in the cotangent bundle of a double Lie group equipped with a 2-cocycle extended symplectic form to build the corresponding Dirac brackets. It is shown that, for 2-cocycle vanishing on each isotropic subspace of the associated Manin triple, the Dirac bracket contains no traces of the cocycle. We also investigate the restriction of the left translation action of the double Lie group on its cotangent bundle, where it fails to be a canonical transformation. However, the Hamiltonian symmetry is restored on some special submanifolds. The main application is to loop groups, showing that a WZNW-type model on the double Lie group with a quadratic Hamilton function in the momentum maps associated with the left translation action on the cotangent bundle with the canonical symplectic form, restricts to a collective system on some special submanifolds. There, the Lagrangian version coincides with the so-called Poisson-Lie σ-model.
Fil: Montani, Hugo Santos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; Argentina
Fil: Zuccalli, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
description We study the restriction to a family of second class constrained submanifolds in the cotangent bundle of a double Lie group equipped with a 2-cocycle extended symplectic form to build the corresponding Dirac brackets. It is shown that, for 2-cocycle vanishing on each isotropic subspace of the associated Manin triple, the Dirac bracket contains no traces of the cocycle. We also investigate the restriction of the left translation action of the double Lie group on its cotangent bundle, where it fails to be a canonical transformation. However, the Hamiltonian symmetry is restored on some special submanifolds. The main application is to loop groups, showing that a WZNW-type model on the double Lie group with a quadratic Hamilton function in the momentum maps associated with the left translation action on the cotangent bundle with the canonical symplectic form, restricts to a collective system on some special submanifolds. There, the Lagrangian version coincides with the so-called Poisson-Lie σ-model.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/59289
Montani, Hugo Santos; Zuccalli, Marcela; Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model; American Institute of Physics; Journal of Mathematical Physics; 55; 9; 9-2014; 1-20
0022-2488
CONICET Digital
CONICET
url http://hdl.handle.net/11336/59289
identifier_str_mv Montani, Hugo Santos; Zuccalli, Marcela; Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model; American Institute of Physics; Journal of Mathematical Physics; 55; 9; 9-2014; 1-20
0022-2488
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4895465
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4895465
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614451218612224
score 13.070432