Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model
- Autores
- Montani, Hugo Santos; Zuccalli, Marcela
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the restriction to a family of second class constrained submanifolds in the cotangent bundle of a double Lie group equipped with a 2-cocycle extended symplectic form to build the corresponding Dirac brackets. It is shown that, for 2-cocycle vanishing on each isotropic subspace of the associated Manin triple, the Dirac bracket contains no traces of the cocycle. We also investigate the restriction of the left translation action of the double Lie group on its cotangent bundle, where it fails to be a canonical transformation. However, the Hamiltonian symmetry is restored on some special submanifolds. The main application is to loop groups, showing that a WZNW-type model on the double Lie group with a quadratic Hamilton function in the momentum maps associated with the left translation action on the cotangent bundle with the canonical symplectic form, restricts to a collective system on some special submanifolds. There, the Lagrangian version coincides with the so-called Poisson-Lie σ-model.
Fil: Montani, Hugo Santos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; Argentina
Fil: Zuccalli, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina - Materia
-
DIRAC METHOD ON DOUBLE LIE GROUPS
CENTRAL EXTENSIONS AND LOOP GROUPS
WZNW MODEL
POISSON-LIE SIGMA MODEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59289
Ver los metadatos del registro completo
id |
CONICETDig_dcbb8a4155984229ba6ff13182660f4b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59289 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-modelMontani, Hugo SantosZuccalli, MarcelaDIRAC METHOD ON DOUBLE LIE GROUPSCENTRAL EXTENSIONS AND LOOP GROUPSWZNW MODELPOISSON-LIE SIGMA MODELhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the restriction to a family of second class constrained submanifolds in the cotangent bundle of a double Lie group equipped with a 2-cocycle extended symplectic form to build the corresponding Dirac brackets. It is shown that, for 2-cocycle vanishing on each isotropic subspace of the associated Manin triple, the Dirac bracket contains no traces of the cocycle. We also investigate the restriction of the left translation action of the double Lie group on its cotangent bundle, where it fails to be a canonical transformation. However, the Hamiltonian symmetry is restored on some special submanifolds. The main application is to loop groups, showing that a WZNW-type model on the double Lie group with a quadratic Hamilton function in the momentum maps associated with the left translation action on the cotangent bundle with the canonical symplectic form, restricts to a collective system on some special submanifolds. There, the Lagrangian version coincides with the so-called Poisson-Lie σ-model.Fil: Montani, Hugo Santos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; ArgentinaFil: Zuccalli, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaAmerican Institute of Physics2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59289Montani, Hugo Santos; Zuccalli, Marcela; Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model; American Institute of Physics; Journal of Mathematical Physics; 55; 9; 9-2014; 1-200022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4895465info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4895465info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:41:55Zoai:ri.conicet.gov.ar:11336/59289instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:41:55.857CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model |
title |
Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model |
spellingShingle |
Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model Montani, Hugo Santos DIRAC METHOD ON DOUBLE LIE GROUPS CENTRAL EXTENSIONS AND LOOP GROUPS WZNW MODEL POISSON-LIE SIGMA MODEL |
title_short |
Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model |
title_full |
Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model |
title_fullStr |
Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model |
title_full_unstemmed |
Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model |
title_sort |
Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model |
dc.creator.none.fl_str_mv |
Montani, Hugo Santos Zuccalli, Marcela |
author |
Montani, Hugo Santos |
author_facet |
Montani, Hugo Santos Zuccalli, Marcela |
author_role |
author |
author2 |
Zuccalli, Marcela |
author2_role |
author |
dc.subject.none.fl_str_mv |
DIRAC METHOD ON DOUBLE LIE GROUPS CENTRAL EXTENSIONS AND LOOP GROUPS WZNW MODEL POISSON-LIE SIGMA MODEL |
topic |
DIRAC METHOD ON DOUBLE LIE GROUPS CENTRAL EXTENSIONS AND LOOP GROUPS WZNW MODEL POISSON-LIE SIGMA MODEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the restriction to a family of second class constrained submanifolds in the cotangent bundle of a double Lie group equipped with a 2-cocycle extended symplectic form to build the corresponding Dirac brackets. It is shown that, for 2-cocycle vanishing on each isotropic subspace of the associated Manin triple, the Dirac bracket contains no traces of the cocycle. We also investigate the restriction of the left translation action of the double Lie group on its cotangent bundle, where it fails to be a canonical transformation. However, the Hamiltonian symmetry is restored on some special submanifolds. The main application is to loop groups, showing that a WZNW-type model on the double Lie group with a quadratic Hamilton function in the momentum maps associated with the left translation action on the cotangent bundle with the canonical symplectic form, restricts to a collective system on some special submanifolds. There, the Lagrangian version coincides with the so-called Poisson-Lie σ-model. Fil: Montani, Hugo Santos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; Argentina Fil: Zuccalli, Marcela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina |
description |
We study the restriction to a family of second class constrained submanifolds in the cotangent bundle of a double Lie group equipped with a 2-cocycle extended symplectic form to build the corresponding Dirac brackets. It is shown that, for 2-cocycle vanishing on each isotropic subspace of the associated Manin triple, the Dirac bracket contains no traces of the cocycle. We also investigate the restriction of the left translation action of the double Lie group on its cotangent bundle, where it fails to be a canonical transformation. However, the Hamiltonian symmetry is restored on some special submanifolds. The main application is to loop groups, showing that a WZNW-type model on the double Lie group with a quadratic Hamilton function in the momentum maps associated with the left translation action on the cotangent bundle with the canonical symplectic form, restricts to a collective system on some special submanifolds. There, the Lagrangian version coincides with the so-called Poisson-Lie σ-model. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59289 Montani, Hugo Santos; Zuccalli, Marcela; Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model; American Institute of Physics; Journal of Mathematical Physics; 55; 9; 9-2014; 1-20 0022-2488 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59289 |
identifier_str_mv |
Montani, Hugo Santos; Zuccalli, Marcela; Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model; American Institute of Physics; Journal of Mathematical Physics; 55; 9; 9-2014; 1-20 0022-2488 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4895465 info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4895465 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614451218612224 |
score |
13.070432 |