Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group
- Autores
- Capriotti, Santiago; Montani, Hugo Santos
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study some symplectic submanifolds in the cotangent bundle of a factorizable Lie group defined by second class constraints. By applying the Dirac method, we study many issues of these spaces as fundamental Dirac brackets, symmetries, and collective dynamics. As the main application, we study integrable systems on these submanifolds as inherited from a system on the whole cotangent bundle, meeting in a natural way with the Adler-Kostant-Symes theory of integrability. © 2011 American Institute of Physics.
Fil: Capriotti, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Montani, Hugo Santos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina - Materia
-
Dirac equation
integral equations
Lie groups - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/66951
Ver los metadatos del registro completo
id |
CONICETDig_09464854ddd20e77e8c10c0f7c9d2e7a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/66951 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie groupCapriotti, SantiagoMontani, Hugo SantosDirac equationintegral equationsLie groupshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study some symplectic submanifolds in the cotangent bundle of a factorizable Lie group defined by second class constraints. By applying the Dirac method, we study many issues of these spaces as fundamental Dirac brackets, symmetries, and collective dynamics. As the main application, we study integrable systems on these submanifolds as inherited from a system on the whole cotangent bundle, meeting in a natural way with the Adler-Kostant-Symes theory of integrability. © 2011 American Institute of Physics.Fil: Capriotti, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Montani, Hugo Santos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaAmerican Institute of Physics2011-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66951Capriotti, Santiago; Montani, Hugo Santos; Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group; American Institute of Physics; Journal of Mathematical Physics; 52; 7; 7-2011; 1-330022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.3603427info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.3603427info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:47Zoai:ri.conicet.gov.ar:11336/66951instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:47.314CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group |
title |
Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group |
spellingShingle |
Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group Capriotti, Santiago Dirac equation integral equations Lie groups |
title_short |
Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group |
title_full |
Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group |
title_fullStr |
Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group |
title_full_unstemmed |
Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group |
title_sort |
Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group |
dc.creator.none.fl_str_mv |
Capriotti, Santiago Montani, Hugo Santos |
author |
Capriotti, Santiago |
author_facet |
Capriotti, Santiago Montani, Hugo Santos |
author_role |
author |
author2 |
Montani, Hugo Santos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Dirac equation integral equations Lie groups |
topic |
Dirac equation integral equations Lie groups |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study some symplectic submanifolds in the cotangent bundle of a factorizable Lie group defined by second class constraints. By applying the Dirac method, we study many issues of these spaces as fundamental Dirac brackets, symmetries, and collective dynamics. As the main application, we study integrable systems on these submanifolds as inherited from a system on the whole cotangent bundle, meeting in a natural way with the Adler-Kostant-Symes theory of integrability. © 2011 American Institute of Physics. Fil: Capriotti, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina Fil: Montani, Hugo Santos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina |
description |
We study some symplectic submanifolds in the cotangent bundle of a factorizable Lie group defined by second class constraints. By applying the Dirac method, we study many issues of these spaces as fundamental Dirac brackets, symmetries, and collective dynamics. As the main application, we study integrable systems on these submanifolds as inherited from a system on the whole cotangent bundle, meeting in a natural way with the Adler-Kostant-Symes theory of integrability. © 2011 American Institute of Physics. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/66951 Capriotti, Santiago; Montani, Hugo Santos; Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group; American Institute of Physics; Journal of Mathematical Physics; 52; 7; 7-2011; 1-33 0022-2488 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/66951 |
identifier_str_mv |
Capriotti, Santiago; Montani, Hugo Santos; Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group; American Institute of Physics; Journal of Mathematical Physics; 52; 7; 7-2011; 1-33 0022-2488 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3603427 info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.3603427 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614172777644032 |
score |
13.070432 |