Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group

Autores
Capriotti, Santiago; Montani, Hugo Santos
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study some symplectic submanifolds in the cotangent bundle of a factorizable Lie group defined by second class constraints. By applying the Dirac method, we study many issues of these spaces as fundamental Dirac brackets, symmetries, and collective dynamics. As the main application, we study integrable systems on these submanifolds as inherited from a system on the whole cotangent bundle, meeting in a natural way with the Adler-Kostant-Symes theory of integrability. © 2011 American Institute of Physics.
Fil: Capriotti, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Montani, Hugo Santos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Materia
Dirac equation
integral equations
Lie groups
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/66951

id CONICETDig_09464854ddd20e77e8c10c0f7c9d2e7a
oai_identifier_str oai:ri.conicet.gov.ar:11336/66951
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie groupCapriotti, SantiagoMontani, Hugo SantosDirac equationintegral equationsLie groupshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study some symplectic submanifolds in the cotangent bundle of a factorizable Lie group defined by second class constraints. By applying the Dirac method, we study many issues of these spaces as fundamental Dirac brackets, symmetries, and collective dynamics. As the main application, we study integrable systems on these submanifolds as inherited from a system on the whole cotangent bundle, meeting in a natural way with the Adler-Kostant-Symes theory of integrability. © 2011 American Institute of Physics.Fil: Capriotti, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Montani, Hugo Santos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaAmerican Institute of Physics2011-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66951Capriotti, Santiago; Montani, Hugo Santos; Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group; American Institute of Physics; Journal of Mathematical Physics; 52; 7; 7-2011; 1-330022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.3603427info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.3603427info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:47Zoai:ri.conicet.gov.ar:11336/66951instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:47.314CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group
title Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group
spellingShingle Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group
Capriotti, Santiago
Dirac equation
integral equations
Lie groups
title_short Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group
title_full Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group
title_fullStr Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group
title_full_unstemmed Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group
title_sort Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group
dc.creator.none.fl_str_mv Capriotti, Santiago
Montani, Hugo Santos
author Capriotti, Santiago
author_facet Capriotti, Santiago
Montani, Hugo Santos
author_role author
author2 Montani, Hugo Santos
author2_role author
dc.subject.none.fl_str_mv Dirac equation
integral equations
Lie groups
topic Dirac equation
integral equations
Lie groups
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study some symplectic submanifolds in the cotangent bundle of a factorizable Lie group defined by second class constraints. By applying the Dirac method, we study many issues of these spaces as fundamental Dirac brackets, symmetries, and collective dynamics. As the main application, we study integrable systems on these submanifolds as inherited from a system on the whole cotangent bundle, meeting in a natural way with the Adler-Kostant-Symes theory of integrability. © 2011 American Institute of Physics.
Fil: Capriotti, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
Fil: Montani, Hugo Santos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
description We study some symplectic submanifolds in the cotangent bundle of a factorizable Lie group defined by second class constraints. By applying the Dirac method, we study many issues of these spaces as fundamental Dirac brackets, symmetries, and collective dynamics. As the main application, we study integrable systems on these submanifolds as inherited from a system on the whole cotangent bundle, meeting in a natural way with the Adler-Kostant-Symes theory of integrability. © 2011 American Institute of Physics.
publishDate 2011
dc.date.none.fl_str_mv 2011-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/66951
Capriotti, Santiago; Montani, Hugo Santos; Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group; American Institute of Physics; Journal of Mathematical Physics; 52; 7; 7-2011; 1-33
0022-2488
CONICET Digital
CONICET
url http://hdl.handle.net/11336/66951
identifier_str_mv Capriotti, Santiago; Montani, Hugo Santos; Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group; American Institute of Physics; Journal of Mathematical Physics; 52; 7; 7-2011; 1-33
0022-2488
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3603427
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.3603427
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614172777644032
score 13.070432