A Reactive Scheduling Approach Based on Domain-Knowledge
- Autores
- Novas, Juan Matias; Henning, Gabriela Patricia
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Real world industrial environments frequently face unexpected events that generallydisrupt in-progress production schedules. This contribution presents advances in thedevelopment of a support framework to address the repair-based reactive scheduling of industrial batch plants. When facing an unforeseen event, the framework is capable of capturing the current operational plan and its status. Based on this information, a rescheduling problem specification is developed. Tasks to be rescheduled are identified and, for them, the set of the most suitable rescheduling action types (e.g. shift, reassign, etc.) is specified. For a given specification, many solutions to the problem could exist. Then, the second step of this approach relies on the generation of a constraint programming (CP) model to address the rescheduling problem just specified. To create such model each rescheduling action type is automatically transformed into different constraints. In addition, a search strategy based on domain knowledge can also be developed. Finally, the solution of the CP model and its associated search strategy will render the repaired schedule in which the repair action types that were suggested will be instantiated. A case study of a multiproduct multistage batch plant is presented, where an event of unit failure is considered.
Fil: Novas, Juan Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina
Fil: Henning, Gabriela Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina - Materia
-
REACTIVE SCHEDULING
DECISION SUPPORT SYSTEMS
BATCH PLANTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17118
Ver los metadatos del registro completo
id |
CONICETDig_dcab32b4d436f071eb7579b6536460e0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17118 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Reactive Scheduling Approach Based on Domain-KnowledgeNovas, Juan MatiasHenning, Gabriela PatriciaREACTIVE SCHEDULINGDECISION SUPPORT SYSTEMSBATCH PLANTShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Real world industrial environments frequently face unexpected events that generallydisrupt in-progress production schedules. This contribution presents advances in thedevelopment of a support framework to address the repair-based reactive scheduling of industrial batch plants. When facing an unforeseen event, the framework is capable of capturing the current operational plan and its status. Based on this information, a rescheduling problem specification is developed. Tasks to be rescheduled are identified and, for them, the set of the most suitable rescheduling action types (e.g. shift, reassign, etc.) is specified. For a given specification, many solutions to the problem could exist. Then, the second step of this approach relies on the generation of a constraint programming (CP) model to address the rescheduling problem just specified. To create such model each rescheduling action type is automatically transformed into different constraints. In addition, a search strategy based on domain knowledge can also be developed. Finally, the solution of the CP model and its associated search strategy will render the repaired schedule in which the repair action types that were suggested will be instantiated. A case study of a multiproduct multistage batch plant is presented, where an event of unit failure is considered.Fil: Novas, Juan Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; ArgentinaFil: Henning, Gabriela Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; ArgentinaElsevier2009-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17118Novas, Juan Matias; Henning, Gabriela Patricia; A Reactive Scheduling Approach Based on Domain-Knowledge; Elsevier; Computer Aided Chemical Engineering; 27; 8-2009; 765-7701570-7946enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/S1570-7946(09)70348-7info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1570794609703487info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:47Zoai:ri.conicet.gov.ar:11336/17118instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:47.535CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Reactive Scheduling Approach Based on Domain-Knowledge |
title |
A Reactive Scheduling Approach Based on Domain-Knowledge |
spellingShingle |
A Reactive Scheduling Approach Based on Domain-Knowledge Novas, Juan Matias REACTIVE SCHEDULING DECISION SUPPORT SYSTEMS BATCH PLANTS |
title_short |
A Reactive Scheduling Approach Based on Domain-Knowledge |
title_full |
A Reactive Scheduling Approach Based on Domain-Knowledge |
title_fullStr |
A Reactive Scheduling Approach Based on Domain-Knowledge |
title_full_unstemmed |
A Reactive Scheduling Approach Based on Domain-Knowledge |
title_sort |
A Reactive Scheduling Approach Based on Domain-Knowledge |
dc.creator.none.fl_str_mv |
Novas, Juan Matias Henning, Gabriela Patricia |
author |
Novas, Juan Matias |
author_facet |
Novas, Juan Matias Henning, Gabriela Patricia |
author_role |
author |
author2 |
Henning, Gabriela Patricia |
author2_role |
author |
dc.subject.none.fl_str_mv |
REACTIVE SCHEDULING DECISION SUPPORT SYSTEMS BATCH PLANTS |
topic |
REACTIVE SCHEDULING DECISION SUPPORT SYSTEMS BATCH PLANTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Real world industrial environments frequently face unexpected events that generallydisrupt in-progress production schedules. This contribution presents advances in thedevelopment of a support framework to address the repair-based reactive scheduling of industrial batch plants. When facing an unforeseen event, the framework is capable of capturing the current operational plan and its status. Based on this information, a rescheduling problem specification is developed. Tasks to be rescheduled are identified and, for them, the set of the most suitable rescheduling action types (e.g. shift, reassign, etc.) is specified. For a given specification, many solutions to the problem could exist. Then, the second step of this approach relies on the generation of a constraint programming (CP) model to address the rescheduling problem just specified. To create such model each rescheduling action type is automatically transformed into different constraints. In addition, a search strategy based on domain knowledge can also be developed. Finally, the solution of the CP model and its associated search strategy will render the repaired schedule in which the repair action types that were suggested will be instantiated. A case study of a multiproduct multistage batch plant is presented, where an event of unit failure is considered. Fil: Novas, Juan Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina Fil: Henning, Gabriela Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina |
description |
Real world industrial environments frequently face unexpected events that generallydisrupt in-progress production schedules. This contribution presents advances in thedevelopment of a support framework to address the repair-based reactive scheduling of industrial batch plants. When facing an unforeseen event, the framework is capable of capturing the current operational plan and its status. Based on this information, a rescheduling problem specification is developed. Tasks to be rescheduled are identified and, for them, the set of the most suitable rescheduling action types (e.g. shift, reassign, etc.) is specified. For a given specification, many solutions to the problem could exist. Then, the second step of this approach relies on the generation of a constraint programming (CP) model to address the rescheduling problem just specified. To create such model each rescheduling action type is automatically transformed into different constraints. In addition, a search strategy based on domain knowledge can also be developed. Finally, the solution of the CP model and its associated search strategy will render the repaired schedule in which the repair action types that were suggested will be instantiated. A case study of a multiproduct multistage batch plant is presented, where an event of unit failure is considered. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17118 Novas, Juan Matias; Henning, Gabriela Patricia; A Reactive Scheduling Approach Based on Domain-Knowledge; Elsevier; Computer Aided Chemical Engineering; 27; 8-2009; 765-770 1570-7946 |
url |
http://hdl.handle.net/11336/17118 |
identifier_str_mv |
Novas, Juan Matias; Henning, Gabriela Patricia; A Reactive Scheduling Approach Based on Domain-Knowledge; Elsevier; Computer Aided Chemical Engineering; 27; 8-2009; 765-770 1570-7946 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/S1570-7946(09)70348-7 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1570794609703487 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082652496461824 |
score |
13.22299 |