A Reactive Scheduling Approach Based on Domain-Knowledge

Autores
Novas, Juan Matias; Henning, Gabriela Patricia
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Real world industrial environments frequently face unexpected events that generallydisrupt in-progress production schedules. This contribution presents advances in thedevelopment of a support framework to address the repair-based reactive scheduling of industrial batch plants. When facing an unforeseen event, the framework is capable of capturing the current operational plan and its status. Based on this information, a rescheduling problem specification is developed. Tasks to be rescheduled are identified and, for them, the set of the most suitable rescheduling action types (e.g. shift, reassign, etc.) is specified. For a given specification, many solutions to the problem could exist. Then, the second step of this approach relies on the generation of a constraint programming (CP) model to address the rescheduling problem just specified. To create such model each rescheduling action type is automatically transformed into different constraints. In addition, a search strategy based on domain knowledge can also be developed. Finally, the solution of the CP model and its associated search strategy will render the repaired schedule in which the repair action types that were suggested will be instantiated. A case study of a multiproduct multistage batch plant is presented, where an event of unit failure is considered.
Fil: Novas, Juan Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina
Fil: Henning, Gabriela Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina
Materia
REACTIVE SCHEDULING
DECISION SUPPORT SYSTEMS
BATCH PLANTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17118

id CONICETDig_dcab32b4d436f071eb7579b6536460e0
oai_identifier_str oai:ri.conicet.gov.ar:11336/17118
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Reactive Scheduling Approach Based on Domain-KnowledgeNovas, Juan MatiasHenning, Gabriela PatriciaREACTIVE SCHEDULINGDECISION SUPPORT SYSTEMSBATCH PLANTShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Real world industrial environments frequently face unexpected events that generallydisrupt in-progress production schedules. This contribution presents advances in thedevelopment of a support framework to address the repair-based reactive scheduling of industrial batch plants. When facing an unforeseen event, the framework is capable of capturing the current operational plan and its status. Based on this information, a rescheduling problem specification is developed. Tasks to be rescheduled are identified and, for them, the set of the most suitable rescheduling action types (e.g. shift, reassign, etc.) is specified. For a given specification, many solutions to the problem could exist. Then, the second step of this approach relies on the generation of a constraint programming (CP) model to address the rescheduling problem just specified. To create such model each rescheduling action type is automatically transformed into different constraints. In addition, a search strategy based on domain knowledge can also be developed. Finally, the solution of the CP model and its associated search strategy will render the repaired schedule in which the repair action types that were suggested will be instantiated. A case study of a multiproduct multistage batch plant is presented, where an event of unit failure is considered.Fil: Novas, Juan Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; ArgentinaFil: Henning, Gabriela Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; ArgentinaElsevier2009-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17118Novas, Juan Matias; Henning, Gabriela Patricia; A Reactive Scheduling Approach Based on Domain-Knowledge; Elsevier; Computer Aided Chemical Engineering; 27; 8-2009; 765-7701570-7946enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/S1570-7946(09)70348-7info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1570794609703487info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:47Zoai:ri.conicet.gov.ar:11336/17118instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:47.535CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Reactive Scheduling Approach Based on Domain-Knowledge
title A Reactive Scheduling Approach Based on Domain-Knowledge
spellingShingle A Reactive Scheduling Approach Based on Domain-Knowledge
Novas, Juan Matias
REACTIVE SCHEDULING
DECISION SUPPORT SYSTEMS
BATCH PLANTS
title_short A Reactive Scheduling Approach Based on Domain-Knowledge
title_full A Reactive Scheduling Approach Based on Domain-Knowledge
title_fullStr A Reactive Scheduling Approach Based on Domain-Knowledge
title_full_unstemmed A Reactive Scheduling Approach Based on Domain-Knowledge
title_sort A Reactive Scheduling Approach Based on Domain-Knowledge
dc.creator.none.fl_str_mv Novas, Juan Matias
Henning, Gabriela Patricia
author Novas, Juan Matias
author_facet Novas, Juan Matias
Henning, Gabriela Patricia
author_role author
author2 Henning, Gabriela Patricia
author2_role author
dc.subject.none.fl_str_mv REACTIVE SCHEDULING
DECISION SUPPORT SYSTEMS
BATCH PLANTS
topic REACTIVE SCHEDULING
DECISION SUPPORT SYSTEMS
BATCH PLANTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Real world industrial environments frequently face unexpected events that generallydisrupt in-progress production schedules. This contribution presents advances in thedevelopment of a support framework to address the repair-based reactive scheduling of industrial batch plants. When facing an unforeseen event, the framework is capable of capturing the current operational plan and its status. Based on this information, a rescheduling problem specification is developed. Tasks to be rescheduled are identified and, for them, the set of the most suitable rescheduling action types (e.g. shift, reassign, etc.) is specified. For a given specification, many solutions to the problem could exist. Then, the second step of this approach relies on the generation of a constraint programming (CP) model to address the rescheduling problem just specified. To create such model each rescheduling action type is automatically transformed into different constraints. In addition, a search strategy based on domain knowledge can also be developed. Finally, the solution of the CP model and its associated search strategy will render the repaired schedule in which the repair action types that were suggested will be instantiated. A case study of a multiproduct multistage batch plant is presented, where an event of unit failure is considered.
Fil: Novas, Juan Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina
Fil: Henning, Gabriela Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina
description Real world industrial environments frequently face unexpected events that generallydisrupt in-progress production schedules. This contribution presents advances in thedevelopment of a support framework to address the repair-based reactive scheduling of industrial batch plants. When facing an unforeseen event, the framework is capable of capturing the current operational plan and its status. Based on this information, a rescheduling problem specification is developed. Tasks to be rescheduled are identified and, for them, the set of the most suitable rescheduling action types (e.g. shift, reassign, etc.) is specified. For a given specification, many solutions to the problem could exist. Then, the second step of this approach relies on the generation of a constraint programming (CP) model to address the rescheduling problem just specified. To create such model each rescheduling action type is automatically transformed into different constraints. In addition, a search strategy based on domain knowledge can also be developed. Finally, the solution of the CP model and its associated search strategy will render the repaired schedule in which the repair action types that were suggested will be instantiated. A case study of a multiproduct multistage batch plant is presented, where an event of unit failure is considered.
publishDate 2009
dc.date.none.fl_str_mv 2009-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17118
Novas, Juan Matias; Henning, Gabriela Patricia; A Reactive Scheduling Approach Based on Domain-Knowledge; Elsevier; Computer Aided Chemical Engineering; 27; 8-2009; 765-770
1570-7946
url http://hdl.handle.net/11336/17118
identifier_str_mv Novas, Juan Matias; Henning, Gabriela Patricia; A Reactive Scheduling Approach Based on Domain-Knowledge; Elsevier; Computer Aided Chemical Engineering; 27; 8-2009; 765-770
1570-7946
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/S1570-7946(09)70348-7
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1570794609703487
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082652496461824
score 13.22299