Nonequilibrium conductance of a nanodevice for small bias voltage

Autores
Aligia, Armando Angel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Using nonequilibrium renormalized perturbation theory, we calculate the retarded and lesser self-energies, the spectral density ρ(ω) near the Fermi energy, and the conductance G through a quantum dot as a function of a small bias voltage V, in the general case of electron–hole asymmetry and intermediate valence. The linear terms in ω and V are given exactly in terms of thermodynamic quantities. When the energies necessary to add the first electron (Ed) and the second one (Ed + U) to the quantum dot are not symmetrically placed around the Fermi level, G has a term linear in V if, in addition, either the voltage drop or the coupling to the leads is not symmetric. The effects of temperature are discussed. The results simplify for a symmetric voltage drop, a situation usual in experiment.
Fil: Aligia, Armando Angel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Materia
Non equlibrium
Scaling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/268619

id CONICETDig_dc9f8520789c2910ed5b1ddade9bf4ea
oai_identifier_str oai:ri.conicet.gov.ar:11336/268619
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nonequilibrium conductance of a nanodevice for small bias voltageAligia, Armando AngelNon equlibriumScalinghttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Using nonequilibrium renormalized perturbation theory, we calculate the retarded and lesser self-energies, the spectral density ρ(ω) near the Fermi energy, and the conductance G through a quantum dot as a function of a small bias voltage V, in the general case of electron–hole asymmetry and intermediate valence. The linear terms in ω and V are given exactly in terms of thermodynamic quantities. When the energies necessary to add the first electron (Ed) and the second one (Ed + U) to the quantum dot are not symmetrically placed around the Fermi level, G has a term linear in V if, in addition, either the voltage drop or the coupling to the leads is not symmetric. The effects of temperature are discussed. The results simplify for a symmetric voltage drop, a situation usual in experiment.Fil: Aligia, Armando Angel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaIOP Publishing2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/268619Aligia, Armando Angel; Nonequilibrium conductance of a nanodevice for small bias voltage; IOP Publishing; Journal of Physics: Condensed Matter; 24; 1; 1-2012; 15-3060953-8984CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0953-8984/24/1/015306info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:46:51Zoai:ri.conicet.gov.ar:11336/268619instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:46:52.167CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nonequilibrium conductance of a nanodevice for small bias voltage
title Nonequilibrium conductance of a nanodevice for small bias voltage
spellingShingle Nonequilibrium conductance of a nanodevice for small bias voltage
Aligia, Armando Angel
Non equlibrium
Scaling
title_short Nonequilibrium conductance of a nanodevice for small bias voltage
title_full Nonequilibrium conductance of a nanodevice for small bias voltage
title_fullStr Nonequilibrium conductance of a nanodevice for small bias voltage
title_full_unstemmed Nonequilibrium conductance of a nanodevice for small bias voltage
title_sort Nonequilibrium conductance of a nanodevice for small bias voltage
dc.creator.none.fl_str_mv Aligia, Armando Angel
author Aligia, Armando Angel
author_facet Aligia, Armando Angel
author_role author
dc.subject.none.fl_str_mv Non equlibrium
Scaling
topic Non equlibrium
Scaling
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Using nonequilibrium renormalized perturbation theory, we calculate the retarded and lesser self-energies, the spectral density ρ(ω) near the Fermi energy, and the conductance G through a quantum dot as a function of a small bias voltage V, in the general case of electron–hole asymmetry and intermediate valence. The linear terms in ω and V are given exactly in terms of thermodynamic quantities. When the energies necessary to add the first electron (Ed) and the second one (Ed + U) to the quantum dot are not symmetrically placed around the Fermi level, G has a term linear in V if, in addition, either the voltage drop or the coupling to the leads is not symmetric. The effects of temperature are discussed. The results simplify for a symmetric voltage drop, a situation usual in experiment.
Fil: Aligia, Armando Angel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
description Using nonequilibrium renormalized perturbation theory, we calculate the retarded and lesser self-energies, the spectral density ρ(ω) near the Fermi energy, and the conductance G through a quantum dot as a function of a small bias voltage V, in the general case of electron–hole asymmetry and intermediate valence. The linear terms in ω and V are given exactly in terms of thermodynamic quantities. When the energies necessary to add the first electron (Ed) and the second one (Ed + U) to the quantum dot are not symmetrically placed around the Fermi level, G has a term linear in V if, in addition, either the voltage drop or the coupling to the leads is not symmetric. The effects of temperature are discussed. The results simplify for a symmetric voltage drop, a situation usual in experiment.
publishDate 2012
dc.date.none.fl_str_mv 2012-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/268619
Aligia, Armando Angel; Nonequilibrium conductance of a nanodevice for small bias voltage; IOP Publishing; Journal of Physics: Condensed Matter; 24; 1; 1-2012; 15-306
0953-8984
CONICET Digital
CONICET
url http://hdl.handle.net/11336/268619
identifier_str_mv Aligia, Armando Angel; Nonequilibrium conductance of a nanodevice for small bias voltage; IOP Publishing; Journal of Physics: Condensed Matter; 24; 1; 1-2012; 15-306
0953-8984
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-8984/24/1/015306
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082982989791232
score 13.221938