Scaling of conductance through quantum dots with magnetic field

Autores
Hamad, Ignacio Javier; Gazza, Claudio Javier; Andrade Hoyos, Jhon Alejandro; Aligia, Armando Ángel; Cornaglia de la Cruz, Pablo Sebastian; Roura Bas, Pablo Gines
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Using different techniques, and Fermi-liquid relationships, we calculate the variation with the applied magnetic field (up to second order) of the zero-temperature equilibrium conductance through a quantum dot described by the impurity Anderson model. We focus on the strong-coupling limit U, where U is the Coulomb repulsion and is half the resonant-level width, and consider several values of the dot level energy E d , ranging from the Kondo regime to the intermediate-valence regime F − E d ∼ , where F is the Fermi energy. We have mainly used the density-matrix renormalization group (DMRG) and the numerical renormalization group (NRG) combined with renormalized perturbation theory (RPT). Results for the dot occupancy and magnetic susceptibility from the DMRG and NRG + RPT are compared with the corresponding Bethe ansatz results for U → ∞, showing an excellent agreement once E d is renormalized by a constant Haldane shift. For U < 3 a simple perturbative approach in U agrees very well with the other methods. The conductance decreases with the applied magnetic field for dot occupancies n d ∼ 1 and increases for n d ∼ 0.5 or n d ∼ 1.5 regardless of the value of U . We also relate the energy scale for the magnetic-field dependence of the conductance with the width of the
low-energy peak in the spectral density of the dot.
Fil: Hamad, Ignacio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Gazza, Claudio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Andrade Hoyos, Jhon Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Aligia, Armando Ángel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cornaglia de la Cruz, Pablo Sebastian. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Roura Bas, Pablo Gines. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
SCALING
QUANTUM DOTS
KONDO
MAGNETIC FIELD
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/42328

id CONICETDig_cdd6f44e3f3617f0687e40cd361d2fee
oai_identifier_str oai:ri.conicet.gov.ar:11336/42328
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Scaling of conductance through quantum dots with magnetic fieldHamad, Ignacio JavierGazza, Claudio JavierAndrade Hoyos, Jhon AlejandroAligia, Armando ÁngelCornaglia de la Cruz, Pablo SebastianRoura Bas, Pablo GinesSCALINGQUANTUM DOTSKONDOMAGNETIC FIELDhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Using different techniques, and Fermi-liquid relationships, we calculate the variation with the applied magnetic field (up to second order) of the zero-temperature equilibrium conductance through a quantum dot described by the impurity Anderson model. We focus on the strong-coupling limit U, where U is the Coulomb repulsion and is half the resonant-level width, and consider several values of the dot level energy E d , ranging from the Kondo regime to the intermediate-valence regime F − E d ∼ , where F is the Fermi energy. We have mainly used the density-matrix renormalization group (DMRG) and the numerical renormalization group (NRG) combined with renormalized perturbation theory (RPT). Results for the dot occupancy and magnetic susceptibility from the DMRG and NRG + RPT are compared with the corresponding Bethe ansatz results for U → ∞, showing an excellent agreement once E d is renormalized by a constant Haldane shift. For U < 3 a simple perturbative approach in U agrees very well with the other methods. The conductance decreases with the applied magnetic field for dot occupancies n d ∼ 1 and increases for n d ∼ 0.5 or n d ∼ 1.5 regardless of the value of U . We also relate the energy scale for the magnetic-field dependence of the conductance with the width of the<br />low-energy peak in the spectral density of the dot.Fil: Hamad, Ignacio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Gazza, Claudio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Andrade Hoyos, Jhon Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Aligia, Armando Ángel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cornaglia de la Cruz, Pablo Sebastian. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Roura Bas, Pablo Gines. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42328Hamad, Ignacio Javier; Gazza, Claudio Javier; Andrade Hoyos, Jhon Alejandro; Aligia, Armando Ángel; Cornaglia de la Cruz, Pablo Sebastian; et al.; Scaling of conductance through quantum dots with magnetic field; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 92; 19; 11-2015; 1-9; 1951131098-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.92.195113info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.195113info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1509.05948info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:05:13Zoai:ri.conicet.gov.ar:11336/42328instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:05:13.416CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Scaling of conductance through quantum dots with magnetic field
title Scaling of conductance through quantum dots with magnetic field
spellingShingle Scaling of conductance through quantum dots with magnetic field
Hamad, Ignacio Javier
SCALING
QUANTUM DOTS
KONDO
MAGNETIC FIELD
title_short Scaling of conductance through quantum dots with magnetic field
title_full Scaling of conductance through quantum dots with magnetic field
title_fullStr Scaling of conductance through quantum dots with magnetic field
title_full_unstemmed Scaling of conductance through quantum dots with magnetic field
title_sort Scaling of conductance through quantum dots with magnetic field
dc.creator.none.fl_str_mv Hamad, Ignacio Javier
Gazza, Claudio Javier
Andrade Hoyos, Jhon Alejandro
Aligia, Armando Ángel
Cornaglia de la Cruz, Pablo Sebastian
Roura Bas, Pablo Gines
author Hamad, Ignacio Javier
author_facet Hamad, Ignacio Javier
Gazza, Claudio Javier
Andrade Hoyos, Jhon Alejandro
Aligia, Armando Ángel
Cornaglia de la Cruz, Pablo Sebastian
Roura Bas, Pablo Gines
author_role author
author2 Gazza, Claudio Javier
Andrade Hoyos, Jhon Alejandro
Aligia, Armando Ángel
Cornaglia de la Cruz, Pablo Sebastian
Roura Bas, Pablo Gines
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv SCALING
QUANTUM DOTS
KONDO
MAGNETIC FIELD
topic SCALING
QUANTUM DOTS
KONDO
MAGNETIC FIELD
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Using different techniques, and Fermi-liquid relationships, we calculate the variation with the applied magnetic field (up to second order) of the zero-temperature equilibrium conductance through a quantum dot described by the impurity Anderson model. We focus on the strong-coupling limit U, where U is the Coulomb repulsion and is half the resonant-level width, and consider several values of the dot level energy E d , ranging from the Kondo regime to the intermediate-valence regime F − E d ∼ , where F is the Fermi energy. We have mainly used the density-matrix renormalization group (DMRG) and the numerical renormalization group (NRG) combined with renormalized perturbation theory (RPT). Results for the dot occupancy and magnetic susceptibility from the DMRG and NRG + RPT are compared with the corresponding Bethe ansatz results for U → ∞, showing an excellent agreement once E d is renormalized by a constant Haldane shift. For U < 3 a simple perturbative approach in U agrees very well with the other methods. The conductance decreases with the applied magnetic field for dot occupancies n d ∼ 1 and increases for n d ∼ 0.5 or n d ∼ 1.5 regardless of the value of U . We also relate the energy scale for the magnetic-field dependence of the conductance with the width of the<br />low-energy peak in the spectral density of the dot.
Fil: Hamad, Ignacio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Gazza, Claudio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Andrade Hoyos, Jhon Alejandro. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Aligia, Armando Ángel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cornaglia de la Cruz, Pablo Sebastian. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Roura Bas, Pablo Gines. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Using different techniques, and Fermi-liquid relationships, we calculate the variation with the applied magnetic field (up to second order) of the zero-temperature equilibrium conductance through a quantum dot described by the impurity Anderson model. We focus on the strong-coupling limit U, where U is the Coulomb repulsion and is half the resonant-level width, and consider several values of the dot level energy E d , ranging from the Kondo regime to the intermediate-valence regime F − E d ∼ , where F is the Fermi energy. We have mainly used the density-matrix renormalization group (DMRG) and the numerical renormalization group (NRG) combined with renormalized perturbation theory (RPT). Results for the dot occupancy and magnetic susceptibility from the DMRG and NRG + RPT are compared with the corresponding Bethe ansatz results for U → ∞, showing an excellent agreement once E d is renormalized by a constant Haldane shift. For U < 3 a simple perturbative approach in U agrees very well with the other methods. The conductance decreases with the applied magnetic field for dot occupancies n d ∼ 1 and increases for n d ∼ 0.5 or n d ∼ 1.5 regardless of the value of U . We also relate the energy scale for the magnetic-field dependence of the conductance with the width of the<br />low-energy peak in the spectral density of the dot.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/42328
Hamad, Ignacio Javier; Gazza, Claudio Javier; Andrade Hoyos, Jhon Alejandro; Aligia, Armando Ángel; Cornaglia de la Cruz, Pablo Sebastian; et al.; Scaling of conductance through quantum dots with magnetic field; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 92; 19; 11-2015; 1-9; 195113
1098-0121
CONICET Digital
CONICET
url http://hdl.handle.net/11336/42328
identifier_str_mv Hamad, Ignacio Javier; Gazza, Claudio Javier; Andrade Hoyos, Jhon Alejandro; Aligia, Armando Ángel; Cornaglia de la Cruz, Pablo Sebastian; et al.; Scaling of conductance through quantum dots with magnetic field; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 92; 19; 11-2015; 1-9; 195113
1098-0121
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.92.195113
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.92.195113
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1509.05948
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980185687719936
score 12.993085