Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide

Autores
Jourdin, Ludovic; Lu, Yang; Flexer, Victoria; Keller, Jurg; Freguia, Stefano
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Electron‐transfer pathways occurring in biocathodes are still unknown. We demonstrate here that high rates of acetate production by microbial electrosynthesis are mainly driven by an electron flux from the electrode to carbon dioxide, occurring via biologically induced hydrogen, with (99±1) % electron recovery into acetate. Nevertheless, acetate production is shown to occur exclusively within the biofilm. The acetate producers, putatively Acetoanaerobium, showed the remarkable ability to consume a high H2 flux before it could escape from the biofilm. At zero wastage of H2 gas, it allows superior production rates and lesser technical bottlenecks over technologies that rely on mass transfer of H2 to microorganisms suspended in aqueous solution. This study suggests that bacterial modification of the electrode surface (possibly via synthesis of Cu nanoparticles) is directly involved in the significant enhancement of the hydrogen production.
Fil: Jourdin, Ludovic. The University Of Queensland; Australia
Fil: Lu, Yang. The University Of Queensland; Australia
Fil: Flexer, Victoria. The University Of Queensland; Australia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Keller, Jurg. The University Of Queensland; Australia
Fil: Freguia, Stefano. The University Of Queensland; Australia
Materia
BIOFILMS
BIOHYDROGEN
CARBON DIOXIDE FIXATION
ELECTRON TRANSFER
MICROBIAL ELECTROSYNTHESIS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/93293

id CONICETDig_dc8ac5000e751fcb6734ffe55e808914
oai_identifier_str oai:ri.conicet.gov.ar:11336/93293
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon DioxideJourdin, LudovicLu, YangFlexer, VictoriaKeller, JurgFreguia, StefanoBIOFILMSBIOHYDROGENCARBON DIOXIDE FIXATIONELECTRON TRANSFERMICROBIAL ELECTROSYNTHESIShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Electron‐transfer pathways occurring in biocathodes are still unknown. We demonstrate here that high rates of acetate production by microbial electrosynthesis are mainly driven by an electron flux from the electrode to carbon dioxide, occurring via biologically induced hydrogen, with (99±1) % electron recovery into acetate. Nevertheless, acetate production is shown to occur exclusively within the biofilm. The acetate producers, putatively Acetoanaerobium, showed the remarkable ability to consume a high H2 flux before it could escape from the biofilm. At zero wastage of H2 gas, it allows superior production rates and lesser technical bottlenecks over technologies that rely on mass transfer of H2 to microorganisms suspended in aqueous solution. This study suggests that bacterial modification of the electrode surface (possibly via synthesis of Cu nanoparticles) is directly involved in the significant enhancement of the hydrogen production.Fil: Jourdin, Ludovic. The University Of Queensland; AustraliaFil: Lu, Yang. The University Of Queensland; AustraliaFil: Flexer, Victoria. The University Of Queensland; Australia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Keller, Jurg. The University Of Queensland; AustraliaFil: Freguia, Stefano. The University Of Queensland; AustraliaWiley-VCH2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93293Jourdin, Ludovic; Lu, Yang; Flexer, Victoria; Keller, Jurg; Freguia, Stefano; Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide; Wiley-VCH; ChemElectroChem; 3; 4; 4-2016; 581-5912196-0216CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/celc.201500530info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201500530info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:54Zoai:ri.conicet.gov.ar:11336/93293instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:54.654CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide
title Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide
spellingShingle Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide
Jourdin, Ludovic
BIOFILMS
BIOHYDROGEN
CARBON DIOXIDE FIXATION
ELECTRON TRANSFER
MICROBIAL ELECTROSYNTHESIS
title_short Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide
title_full Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide
title_fullStr Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide
title_full_unstemmed Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide
title_sort Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide
dc.creator.none.fl_str_mv Jourdin, Ludovic
Lu, Yang
Flexer, Victoria
Keller, Jurg
Freguia, Stefano
author Jourdin, Ludovic
author_facet Jourdin, Ludovic
Lu, Yang
Flexer, Victoria
Keller, Jurg
Freguia, Stefano
author_role author
author2 Lu, Yang
Flexer, Victoria
Keller, Jurg
Freguia, Stefano
author2_role author
author
author
author
dc.subject.none.fl_str_mv BIOFILMS
BIOHYDROGEN
CARBON DIOXIDE FIXATION
ELECTRON TRANSFER
MICROBIAL ELECTROSYNTHESIS
topic BIOFILMS
BIOHYDROGEN
CARBON DIOXIDE FIXATION
ELECTRON TRANSFER
MICROBIAL ELECTROSYNTHESIS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Electron‐transfer pathways occurring in biocathodes are still unknown. We demonstrate here that high rates of acetate production by microbial electrosynthesis are mainly driven by an electron flux from the electrode to carbon dioxide, occurring via biologically induced hydrogen, with (99±1) % electron recovery into acetate. Nevertheless, acetate production is shown to occur exclusively within the biofilm. The acetate producers, putatively Acetoanaerobium, showed the remarkable ability to consume a high H2 flux before it could escape from the biofilm. At zero wastage of H2 gas, it allows superior production rates and lesser technical bottlenecks over technologies that rely on mass transfer of H2 to microorganisms suspended in aqueous solution. This study suggests that bacterial modification of the electrode surface (possibly via synthesis of Cu nanoparticles) is directly involved in the significant enhancement of the hydrogen production.
Fil: Jourdin, Ludovic. The University Of Queensland; Australia
Fil: Lu, Yang. The University Of Queensland; Australia
Fil: Flexer, Victoria. The University Of Queensland; Australia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Keller, Jurg. The University Of Queensland; Australia
Fil: Freguia, Stefano. The University Of Queensland; Australia
description Electron‐transfer pathways occurring in biocathodes are still unknown. We demonstrate here that high rates of acetate production by microbial electrosynthesis are mainly driven by an electron flux from the electrode to carbon dioxide, occurring via biologically induced hydrogen, with (99±1) % electron recovery into acetate. Nevertheless, acetate production is shown to occur exclusively within the biofilm. The acetate producers, putatively Acetoanaerobium, showed the remarkable ability to consume a high H2 flux before it could escape from the biofilm. At zero wastage of H2 gas, it allows superior production rates and lesser technical bottlenecks over technologies that rely on mass transfer of H2 to microorganisms suspended in aqueous solution. This study suggests that bacterial modification of the electrode surface (possibly via synthesis of Cu nanoparticles) is directly involved in the significant enhancement of the hydrogen production.
publishDate 2016
dc.date.none.fl_str_mv 2016-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/93293
Jourdin, Ludovic; Lu, Yang; Flexer, Victoria; Keller, Jurg; Freguia, Stefano; Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide; Wiley-VCH; ChemElectroChem; 3; 4; 4-2016; 581-591
2196-0216
CONICET Digital
CONICET
url http://hdl.handle.net/11336/93293
identifier_str_mv Jourdin, Ludovic; Lu, Yang; Flexer, Victoria; Keller, Jurg; Freguia, Stefano; Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide; Wiley-VCH; ChemElectroChem; 3; 4; 4-2016; 581-591
2196-0216
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/celc.201500530
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/celc.201500530
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley-VCH
publisher.none.fl_str_mv Wiley-VCH
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614354935218176
score 13.070432