Gradient subgrid-scale model for relativistic MHD large-eddy simulations
- Autores
- Carrasco, Federico León; Viganò, Daniele; Palenzuela, Carlos
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Magnetohydrodynamics (MHD) turbulence is likely to play an important role in several astrophysical scenarios, where the magnetic Reynolds is very large. Numerically, these cases can be studied efficiently by means of large-eddy simulations, in which the computational resources are used to evolve the system only up to a finite grid size. The resolution is not fine enough to capture all the relevant small-scale physics at play, which is instead effectively modeled by a set of additional terms in the evolution equations, dubbed as subgrid-scale model. Here we extend such approach, commonly used in nonrelativistic/nonmagnetic/incompressible fluid dynamics, to any general set of equation written in conservative form. We apply the so-called gradient model, giving recipes for these general balance-law systems, including the relevant case in which a nontrivial inversion of conserved to primitive fields is needed. In particular, we focus on the relativistic compressible ideal MHD scenario, by providing for the first time and for any equation of state, all the additional nontrivial subgrid-scale terms. As an application, we consider box simulations of the relativistic Kelvin-Helmholtz instability, which is also the first mechanism responsible for the magnetic field amplification in binary neutron star mergers and cannot be captured by the finest grid and longest simulations available (currently and in the near future). We numerically assess the performance of our model, by comparing it to the residuals coming from the filtering of high-resolution simulations. We find that the model can fit very well the residuals coming from filtering simulations with a resolution a few times higher. The application shown here explicitly considers the Minkovski metric, but it can be directly extended to general relativity, thus settling the basis to implement for the first time the gradient subgrid model in a general relativistic magnetohydrodynamics (GRMHD) binary merger large-eddy simulations. Our results suggest that this approach will be potentially able to unveil much better the small-scale dynamics achievable of full GRMHD simulations, or equivalently, to obtain the same results but saving a considerable amount of computational time.
Fil: Carrasco, Federico León. Universitat de les Illes Balears and Institut d’Estudis Espacials de Catalunya; Departament de Física; Palma de Mallorca; España. Max Planck Institute for Gravitational Physics; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Viganò, Daniele. Universitat de les Illes Balears and Institut d’Estudis Espacials de Catalunya; Departament de Física; Palma de Mallorca; España. Universitat de les Illes Balears; Institut d’Aplicacions Computacionals de Codi Comunitari (IAC3); España
Fil: Palenzuela, Carlos. Universitat de les Illes Balears and Institut d’Estudis Espacials de Catalunya; Departament de Física; Palma de Mallorca; España. Universitat de les Illes Balears; Institut d’Aplicacions Computacionals de Codi Comunitari (IAC3); España - Materia
-
MAGNETOHYDRODYNAMICS
TURBULENCE
SUB-GRID-SCALE MODEL
LARGE-EDDY SIMULATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146064
Ver los metadatos del registro completo
id |
CONICETDig_dc2c1d17b229e01275c7fd5057a8c101 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146064 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Gradient subgrid-scale model for relativistic MHD large-eddy simulationsCarrasco, Federico LeónViganò, DanielePalenzuela, CarlosMAGNETOHYDRODYNAMICSTURBULENCESUB-GRID-SCALE MODELLARGE-EDDY SIMULATIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Magnetohydrodynamics (MHD) turbulence is likely to play an important role in several astrophysical scenarios, where the magnetic Reynolds is very large. Numerically, these cases can be studied efficiently by means of large-eddy simulations, in which the computational resources are used to evolve the system only up to a finite grid size. The resolution is not fine enough to capture all the relevant small-scale physics at play, which is instead effectively modeled by a set of additional terms in the evolution equations, dubbed as subgrid-scale model. Here we extend such approach, commonly used in nonrelativistic/nonmagnetic/incompressible fluid dynamics, to any general set of equation written in conservative form. We apply the so-called gradient model, giving recipes for these general balance-law systems, including the relevant case in which a nontrivial inversion of conserved to primitive fields is needed. In particular, we focus on the relativistic compressible ideal MHD scenario, by providing for the first time and for any equation of state, all the additional nontrivial subgrid-scale terms. As an application, we consider box simulations of the relativistic Kelvin-Helmholtz instability, which is also the first mechanism responsible for the magnetic field amplification in binary neutron star mergers and cannot be captured by the finest grid and longest simulations available (currently and in the near future). We numerically assess the performance of our model, by comparing it to the residuals coming from the filtering of high-resolution simulations. We find that the model can fit very well the residuals coming from filtering simulations with a resolution a few times higher. The application shown here explicitly considers the Minkovski metric, but it can be directly extended to general relativity, thus settling the basis to implement for the first time the gradient subgrid model in a general relativistic magnetohydrodynamics (GRMHD) binary merger large-eddy simulations. Our results suggest that this approach will be potentially able to unveil much better the small-scale dynamics achievable of full GRMHD simulations, or equivalently, to obtain the same results but saving a considerable amount of computational time.Fil: Carrasco, Federico León. Universitat de les Illes Balears and Institut d’Estudis Espacials de Catalunya; Departament de Física; Palma de Mallorca; España. Max Planck Institute for Gravitational Physics; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Viganò, Daniele. Universitat de les Illes Balears and Institut d’Estudis Espacials de Catalunya; Departament de Física; Palma de Mallorca; España. Universitat de les Illes Balears; Institut d’Aplicacions Computacionals de Codi Comunitari (IAC3); EspañaFil: Palenzuela, Carlos. Universitat de les Illes Balears and Institut d’Estudis Espacials de Catalunya; Departament de Física; Palma de Mallorca; España. Universitat de les Illes Balears; Institut d’Aplicacions Computacionals de Codi Comunitari (IAC3); EspañaAmerican Physical Society2020-03-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146064Carrasco, Federico León; Viganò, Daniele; Palenzuela, Carlos; Gradient subgrid-scale model for relativistic MHD large-eddy simulations; American Physical Society; Physical Review D; 101; 6; 15-3-2020; 1-162470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.101.063003info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1908.01419info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.063003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:14Zoai:ri.conicet.gov.ar:11336/146064instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:15.262CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Gradient subgrid-scale model for relativistic MHD large-eddy simulations |
title |
Gradient subgrid-scale model for relativistic MHD large-eddy simulations |
spellingShingle |
Gradient subgrid-scale model for relativistic MHD large-eddy simulations Carrasco, Federico León MAGNETOHYDRODYNAMICS TURBULENCE SUB-GRID-SCALE MODEL LARGE-EDDY SIMULATIONS |
title_short |
Gradient subgrid-scale model for relativistic MHD large-eddy simulations |
title_full |
Gradient subgrid-scale model for relativistic MHD large-eddy simulations |
title_fullStr |
Gradient subgrid-scale model for relativistic MHD large-eddy simulations |
title_full_unstemmed |
Gradient subgrid-scale model for relativistic MHD large-eddy simulations |
title_sort |
Gradient subgrid-scale model for relativistic MHD large-eddy simulations |
dc.creator.none.fl_str_mv |
Carrasco, Federico León Viganò, Daniele Palenzuela, Carlos |
author |
Carrasco, Federico León |
author_facet |
Carrasco, Federico León Viganò, Daniele Palenzuela, Carlos |
author_role |
author |
author2 |
Viganò, Daniele Palenzuela, Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MAGNETOHYDRODYNAMICS TURBULENCE SUB-GRID-SCALE MODEL LARGE-EDDY SIMULATIONS |
topic |
MAGNETOHYDRODYNAMICS TURBULENCE SUB-GRID-SCALE MODEL LARGE-EDDY SIMULATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Magnetohydrodynamics (MHD) turbulence is likely to play an important role in several astrophysical scenarios, where the magnetic Reynolds is very large. Numerically, these cases can be studied efficiently by means of large-eddy simulations, in which the computational resources are used to evolve the system only up to a finite grid size. The resolution is not fine enough to capture all the relevant small-scale physics at play, which is instead effectively modeled by a set of additional terms in the evolution equations, dubbed as subgrid-scale model. Here we extend such approach, commonly used in nonrelativistic/nonmagnetic/incompressible fluid dynamics, to any general set of equation written in conservative form. We apply the so-called gradient model, giving recipes for these general balance-law systems, including the relevant case in which a nontrivial inversion of conserved to primitive fields is needed. In particular, we focus on the relativistic compressible ideal MHD scenario, by providing for the first time and for any equation of state, all the additional nontrivial subgrid-scale terms. As an application, we consider box simulations of the relativistic Kelvin-Helmholtz instability, which is also the first mechanism responsible for the magnetic field amplification in binary neutron star mergers and cannot be captured by the finest grid and longest simulations available (currently and in the near future). We numerically assess the performance of our model, by comparing it to the residuals coming from the filtering of high-resolution simulations. We find that the model can fit very well the residuals coming from filtering simulations with a resolution a few times higher. The application shown here explicitly considers the Minkovski metric, but it can be directly extended to general relativity, thus settling the basis to implement for the first time the gradient subgrid model in a general relativistic magnetohydrodynamics (GRMHD) binary merger large-eddy simulations. Our results suggest that this approach will be potentially able to unveil much better the small-scale dynamics achievable of full GRMHD simulations, or equivalently, to obtain the same results but saving a considerable amount of computational time. Fil: Carrasco, Federico León. Universitat de les Illes Balears and Institut d’Estudis Espacials de Catalunya; Departament de Física; Palma de Mallorca; España. Max Planck Institute for Gravitational Physics; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Viganò, Daniele. Universitat de les Illes Balears and Institut d’Estudis Espacials de Catalunya; Departament de Física; Palma de Mallorca; España. Universitat de les Illes Balears; Institut d’Aplicacions Computacionals de Codi Comunitari (IAC3); España Fil: Palenzuela, Carlos. Universitat de les Illes Balears and Institut d’Estudis Espacials de Catalunya; Departament de Física; Palma de Mallorca; España. Universitat de les Illes Balears; Institut d’Aplicacions Computacionals de Codi Comunitari (IAC3); España |
description |
Magnetohydrodynamics (MHD) turbulence is likely to play an important role in several astrophysical scenarios, where the magnetic Reynolds is very large. Numerically, these cases can be studied efficiently by means of large-eddy simulations, in which the computational resources are used to evolve the system only up to a finite grid size. The resolution is not fine enough to capture all the relevant small-scale physics at play, which is instead effectively modeled by a set of additional terms in the evolution equations, dubbed as subgrid-scale model. Here we extend such approach, commonly used in nonrelativistic/nonmagnetic/incompressible fluid dynamics, to any general set of equation written in conservative form. We apply the so-called gradient model, giving recipes for these general balance-law systems, including the relevant case in which a nontrivial inversion of conserved to primitive fields is needed. In particular, we focus on the relativistic compressible ideal MHD scenario, by providing for the first time and for any equation of state, all the additional nontrivial subgrid-scale terms. As an application, we consider box simulations of the relativistic Kelvin-Helmholtz instability, which is also the first mechanism responsible for the magnetic field amplification in binary neutron star mergers and cannot be captured by the finest grid and longest simulations available (currently and in the near future). We numerically assess the performance of our model, by comparing it to the residuals coming from the filtering of high-resolution simulations. We find that the model can fit very well the residuals coming from filtering simulations with a resolution a few times higher. The application shown here explicitly considers the Minkovski metric, but it can be directly extended to general relativity, thus settling the basis to implement for the first time the gradient subgrid model in a general relativistic magnetohydrodynamics (GRMHD) binary merger large-eddy simulations. Our results suggest that this approach will be potentially able to unveil much better the small-scale dynamics achievable of full GRMHD simulations, or equivalently, to obtain the same results but saving a considerable amount of computational time. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146064 Carrasco, Federico León; Viganò, Daniele; Palenzuela, Carlos; Gradient subgrid-scale model for relativistic MHD large-eddy simulations; American Physical Society; Physical Review D; 101; 6; 15-3-2020; 1-16 2470-0010 2470-0029 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146064 |
identifier_str_mv |
Carrasco, Federico León; Viganò, Daniele; Palenzuela, Carlos; Gradient subgrid-scale model for relativistic MHD large-eddy simulations; American Physical Society; Physical Review D; 101; 6; 15-3-2020; 1-16 2470-0010 2470-0029 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.101.063003 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1908.01419 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.063003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269083080327168 |
score |
13.13397 |