Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neurons
- Autores
- Urdapilleta, Eugenio
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Spike generation in neurons produces a temporal point process, whose statistics is governed by intrinsic phenomena and the external incoming inputs to be coded. In particular, spike-evoked adaptation currents support a slow temporal process that conditions spiking probability at the present time according to past activity. In this work, we study the statistics of interspike interval correlations arising in such non-renewal spike trains, for a neuron model that reproduces different spike modes in a small adaptation scenario. We found that correlations are stronger as the neuron fires at a particular firing rate, which is defined by the adaptation process. When set in a subthreshold regime, the neuron may sustain this particular firing rate, and thus induce correlations, by noise. Given that, in this regime, interspike intervals are negatively correlated at any lag, this effect surprisingly implies a reduction in the variability of the spike count statistics at a finite noise intensity.
Fil: Urdapilleta, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (cab). División Física Estadística; Argentina - Materia
-
Neuronas
Adaptación
Código tasas
Regularización - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/79005
Ver los metadatos del registro completo
| id |
CONICETDig_dc0ba39bc81ecbfdd68b2842d7a50da3 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/79005 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neuronsUrdapilleta, EugenioNeuronasAdaptaciónCódigo tasasRegularizaciónhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Spike generation in neurons produces a temporal point process, whose statistics is governed by intrinsic phenomena and the external incoming inputs to be coded. In particular, spike-evoked adaptation currents support a slow temporal process that conditions spiking probability at the present time according to past activity. In this work, we study the statistics of interspike interval correlations arising in such non-renewal spike trains, for a neuron model that reproduces different spike modes in a small adaptation scenario. We found that correlations are stronger as the neuron fires at a particular firing rate, which is defined by the adaptation process. When set in a subthreshold regime, the neuron may sustain this particular firing rate, and thus induce correlations, by noise. Given that, in this regime, interspike intervals are negatively correlated at any lag, this effect surprisingly implies a reduction in the variability of the spike count statistics at a finite noise intensity.Fil: Urdapilleta, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (cab). División Física Estadística; ArgentinaEurophysics Letters2016-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79005Urdapilleta, Eugenio; Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neurons; Europhysics Letters; Europhysics Letters; 115; 6; 9-2016; 1-70295-5075CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1209/0295-5075/115/68002info:eu-repo/semantics/altIdentifier/doi/10.1209/0295-5075/115/68002info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1610.09193info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:10:05Zoai:ri.conicet.gov.ar:11336/79005instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:10:05.48CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neurons |
| title |
Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neurons |
| spellingShingle |
Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neurons Urdapilleta, Eugenio Neuronas Adaptación Código tasas Regularización |
| title_short |
Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neurons |
| title_full |
Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neurons |
| title_fullStr |
Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neurons |
| title_full_unstemmed |
Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neurons |
| title_sort |
Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neurons |
| dc.creator.none.fl_str_mv |
Urdapilleta, Eugenio |
| author |
Urdapilleta, Eugenio |
| author_facet |
Urdapilleta, Eugenio |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Neuronas Adaptación Código tasas Regularización |
| topic |
Neuronas Adaptación Código tasas Regularización |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Spike generation in neurons produces a temporal point process, whose statistics is governed by intrinsic phenomena and the external incoming inputs to be coded. In particular, spike-evoked adaptation currents support a slow temporal process that conditions spiking probability at the present time according to past activity. In this work, we study the statistics of interspike interval correlations arising in such non-renewal spike trains, for a neuron model that reproduces different spike modes in a small adaptation scenario. We found that correlations are stronger as the neuron fires at a particular firing rate, which is defined by the adaptation process. When set in a subthreshold regime, the neuron may sustain this particular firing rate, and thus induce correlations, by noise. Given that, in this regime, interspike intervals are negatively correlated at any lag, this effect surprisingly implies a reduction in the variability of the spike count statistics at a finite noise intensity. Fil: Urdapilleta, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones No Nucleares. Gerencia de Física (cab). División Física Estadística; Argentina |
| description |
Spike generation in neurons produces a temporal point process, whose statistics is governed by intrinsic phenomena and the external incoming inputs to be coded. In particular, spike-evoked adaptation currents support a slow temporal process that conditions spiking probability at the present time according to past activity. In this work, we study the statistics of interspike interval correlations arising in such non-renewal spike trains, for a neuron model that reproduces different spike modes in a small adaptation scenario. We found that correlations are stronger as the neuron fires at a particular firing rate, which is defined by the adaptation process. When set in a subthreshold regime, the neuron may sustain this particular firing rate, and thus induce correlations, by noise. Given that, in this regime, interspike intervals are negatively correlated at any lag, this effect surprisingly implies a reduction in the variability of the spike count statistics at a finite noise intensity. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/79005 Urdapilleta, Eugenio; Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neurons; Europhysics Letters; Europhysics Letters; 115; 6; 9-2016; 1-7 0295-5075 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/79005 |
| identifier_str_mv |
Urdapilleta, Eugenio; Noise-induced interspike interval correlations and spike train regularization in spike-triggered adapting neurons; Europhysics Letters; Europhysics Letters; 115; 6; 9-2016; 1-7 0295-5075 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1209/0295-5075/115/68002 info:eu-repo/semantics/altIdentifier/doi/10.1209/0295-5075/115/68002 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1610.09193 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Europhysics Letters |
| publisher.none.fl_str_mv |
Europhysics Letters |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782483359596544 |
| score |
12.982451 |