Measuring spike train correlation with non-parametric statistics coefficient

Autores
Soletta, Jorge Humberto; Farfan, Fernando Daniel; Felice, Carmelo Jose
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Measure correlation between spike trains is a fundamental step for the study of neural systems. There are many alternatives to measure correlation, but not all possess the required properties. In this paper we propose to use non-parametric coefficients of correlation, coefficients Spearman and Kendall. To analyze their properties were generated computationally trains of spikes that simulate different experimental conditions, then the proposed coefficients were calculated and compared with the Pearson coefficient. The results show that under certain experimental conditions Kendall coefficient is more appropriate to quantify correlations between spikes trains.
Fil: Soletta, Jorge Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina
Fil: Farfan, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina
Fil: Felice, Carmelo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina
Materia
Kendall Coefficient
Neural Correlation
Spearman Coefficient
Spike Train
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/50618

id CONICETDig_f354fdee7ca62ad23b44eeaccec218e9
oai_identifier_str oai:ri.conicet.gov.ar:11336/50618
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Measuring spike train correlation with non-parametric statistics coefficientSoletta, Jorge HumbertoFarfan, Fernando DanielFelice, Carmelo JoseKendall CoefficientNeural CorrelationSpearman CoefficientSpike Trainhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Measure correlation between spike trains is a fundamental step for the study of neural systems. There are many alternatives to measure correlation, but not all possess the required properties. In this paper we propose to use non-parametric coefficients of correlation, coefficients Spearman and Kendall. To analyze their properties were generated computationally trains of spikes that simulate different experimental conditions, then the proposed coefficients were calculated and compared with the Pearson coefficient. The results show that under certain experimental conditions Kendall coefficient is more appropriate to quantify correlations between spikes trains.Fil: Soletta, Jorge Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; ArgentinaFil: Farfan, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; ArgentinaFil: Felice, Carmelo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; ArgentinaInstitute of Electrical and Electronics Engineers2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50618Soletta, Jorge Humberto; Farfan, Fernando Daniel; Felice, Carmelo Jose; Measuring spike train correlation with non-parametric statistics coefficient; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 13; 12; 12-2015; 3743-37461548-0992CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7404902/info:eu-repo/semantics/altIdentifier/doi/10.1109/TLA.2015.7404902info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:33Zoai:ri.conicet.gov.ar:11336/50618instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:33.424CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Measuring spike train correlation with non-parametric statistics coefficient
title Measuring spike train correlation with non-parametric statistics coefficient
spellingShingle Measuring spike train correlation with non-parametric statistics coefficient
Soletta, Jorge Humberto
Kendall Coefficient
Neural Correlation
Spearman Coefficient
Spike Train
title_short Measuring spike train correlation with non-parametric statistics coefficient
title_full Measuring spike train correlation with non-parametric statistics coefficient
title_fullStr Measuring spike train correlation with non-parametric statistics coefficient
title_full_unstemmed Measuring spike train correlation with non-parametric statistics coefficient
title_sort Measuring spike train correlation with non-parametric statistics coefficient
dc.creator.none.fl_str_mv Soletta, Jorge Humberto
Farfan, Fernando Daniel
Felice, Carmelo Jose
author Soletta, Jorge Humberto
author_facet Soletta, Jorge Humberto
Farfan, Fernando Daniel
Felice, Carmelo Jose
author_role author
author2 Farfan, Fernando Daniel
Felice, Carmelo Jose
author2_role author
author
dc.subject.none.fl_str_mv Kendall Coefficient
Neural Correlation
Spearman Coefficient
Spike Train
topic Kendall Coefficient
Neural Correlation
Spearman Coefficient
Spike Train
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Measure correlation between spike trains is a fundamental step for the study of neural systems. There are many alternatives to measure correlation, but not all possess the required properties. In this paper we propose to use non-parametric coefficients of correlation, coefficients Spearman and Kendall. To analyze their properties were generated computationally trains of spikes that simulate different experimental conditions, then the proposed coefficients were calculated and compared with the Pearson coefficient. The results show that under certain experimental conditions Kendall coefficient is more appropriate to quantify correlations between spikes trains.
Fil: Soletta, Jorge Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina
Fil: Farfan, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina
Fil: Felice, Carmelo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentina
description Measure correlation between spike trains is a fundamental step for the study of neural systems. There are many alternatives to measure correlation, but not all possess the required properties. In this paper we propose to use non-parametric coefficients of correlation, coefficients Spearman and Kendall. To analyze their properties were generated computationally trains of spikes that simulate different experimental conditions, then the proposed coefficients were calculated and compared with the Pearson coefficient. The results show that under certain experimental conditions Kendall coefficient is more appropriate to quantify correlations between spikes trains.
publishDate 2015
dc.date.none.fl_str_mv 2015-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/50618
Soletta, Jorge Humberto; Farfan, Fernando Daniel; Felice, Carmelo Jose; Measuring spike train correlation with non-parametric statistics coefficient; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 13; 12; 12-2015; 3743-3746
1548-0992
CONICET Digital
CONICET
url http://hdl.handle.net/11336/50618
identifier_str_mv Soletta, Jorge Humberto; Farfan, Fernando Daniel; Felice, Carmelo Jose; Measuring spike train correlation with non-parametric statistics coefficient; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 13; 12; 12-2015; 3743-3746
1548-0992
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7404902/
info:eu-repo/semantics/altIdentifier/doi/10.1109/TLA.2015.7404902
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614458174865408
score 13.070432