Enhancing distributed EAs by a proactive strategy

Autores
Salto, Carolina; Luna, Francisco; Alba, Enrique
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we propose a new distributed evolutionary algorithm that uses a proactive strategy to adapt its migration policy and the mutation rate. The proactive decision is carried out locally in each subpopulation based on the entropy of that subpopulation. In that way, each subpopulation can change their own incoming flow of individuals by asking their neighbors for more frequent or less frequent migrations in order to maintain the genetic diversity at a desired level. Moreover, this proactive strategy is reinforced by adapting the mutation rate while the algorithm is searching for the problem solution. All these strategies avoid the subpopulations to get trapped into local minima. We conduct computational experiments on large instances of the NK landscape problem which have shown that our proactive approach outperforms traditional dEAs, particularly for not highly rugged landscapes, in which it does not only reaches the most accurate solutions, but it does the fastest.
Fil: Salto, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa; Argentina
Fil: Luna, Francisco. Universidad Carlos III de Madrid; España
Fil: Alba, Enrique. Universidad de Málaga; España
Materia
Proactive Behaviour
Distributed Eas
Migration Period
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/36446

id CONICETDig_d9f6b69042c027810250c7e9114d1baa
oai_identifier_str oai:ri.conicet.gov.ar:11336/36446
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Enhancing distributed EAs by a proactive strategySalto, CarolinaLuna, FranciscoAlba, EnriqueProactive BehaviourDistributed EasMigration Periodhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this work we propose a new distributed evolutionary algorithm that uses a proactive strategy to adapt its migration policy and the mutation rate. The proactive decision is carried out locally in each subpopulation based on the entropy of that subpopulation. In that way, each subpopulation can change their own incoming flow of individuals by asking their neighbors for more frequent or less frequent migrations in order to maintain the genetic diversity at a desired level. Moreover, this proactive strategy is reinforced by adapting the mutation rate while the algorithm is searching for the problem solution. All these strategies avoid the subpopulations to get trapped into local minima. We conduct computational experiments on large instances of the NK landscape problem which have shown that our proactive approach outperforms traditional dEAs, particularly for not highly rugged landscapes, in which it does not only reaches the most accurate solutions, but it does the fastest.Fil: Salto, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa; ArgentinaFil: Luna, Francisco. Universidad Carlos III de Madrid; EspañaFil: Alba, Enrique. Universidad de Málaga; EspañaSpringer2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/36446Salto, Carolina; Luna, Francisco; Alba, Enrique; Enhancing distributed EAs by a proactive strategy; Springer; Cluster Computing-the Journal Of Networks Software Tools And Applications; 17; 2; 10-2014; 219-2291386-7857CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10586-013-0321-4info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10586-013-0321-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:16:39Zoai:ri.conicet.gov.ar:11336/36446instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:16:39.999CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Enhancing distributed EAs by a proactive strategy
title Enhancing distributed EAs by a proactive strategy
spellingShingle Enhancing distributed EAs by a proactive strategy
Salto, Carolina
Proactive Behaviour
Distributed Eas
Migration Period
title_short Enhancing distributed EAs by a proactive strategy
title_full Enhancing distributed EAs by a proactive strategy
title_fullStr Enhancing distributed EAs by a proactive strategy
title_full_unstemmed Enhancing distributed EAs by a proactive strategy
title_sort Enhancing distributed EAs by a proactive strategy
dc.creator.none.fl_str_mv Salto, Carolina
Luna, Francisco
Alba, Enrique
author Salto, Carolina
author_facet Salto, Carolina
Luna, Francisco
Alba, Enrique
author_role author
author2 Luna, Francisco
Alba, Enrique
author2_role author
author
dc.subject.none.fl_str_mv Proactive Behaviour
Distributed Eas
Migration Period
topic Proactive Behaviour
Distributed Eas
Migration Period
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we propose a new distributed evolutionary algorithm that uses a proactive strategy to adapt its migration policy and the mutation rate. The proactive decision is carried out locally in each subpopulation based on the entropy of that subpopulation. In that way, each subpopulation can change their own incoming flow of individuals by asking their neighbors for more frequent or less frequent migrations in order to maintain the genetic diversity at a desired level. Moreover, this proactive strategy is reinforced by adapting the mutation rate while the algorithm is searching for the problem solution. All these strategies avoid the subpopulations to get trapped into local minima. We conduct computational experiments on large instances of the NK landscape problem which have shown that our proactive approach outperforms traditional dEAs, particularly for not highly rugged landscapes, in which it does not only reaches the most accurate solutions, but it does the fastest.
Fil: Salto, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa; Argentina
Fil: Luna, Francisco. Universidad Carlos III de Madrid; España
Fil: Alba, Enrique. Universidad de Málaga; España
description In this work we propose a new distributed evolutionary algorithm that uses a proactive strategy to adapt its migration policy and the mutation rate. The proactive decision is carried out locally in each subpopulation based on the entropy of that subpopulation. In that way, each subpopulation can change their own incoming flow of individuals by asking their neighbors for more frequent or less frequent migrations in order to maintain the genetic diversity at a desired level. Moreover, this proactive strategy is reinforced by adapting the mutation rate while the algorithm is searching for the problem solution. All these strategies avoid the subpopulations to get trapped into local minima. We conduct computational experiments on large instances of the NK landscape problem which have shown that our proactive approach outperforms traditional dEAs, particularly for not highly rugged landscapes, in which it does not only reaches the most accurate solutions, but it does the fastest.
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/36446
Salto, Carolina; Luna, Francisco; Alba, Enrique; Enhancing distributed EAs by a proactive strategy; Springer; Cluster Computing-the Journal Of Networks Software Tools And Applications; 17; 2; 10-2014; 219-229
1386-7857
CONICET Digital
CONICET
url http://hdl.handle.net/11336/36446
identifier_str_mv Salto, Carolina; Luna, Francisco; Alba, Enrique; Enhancing distributed EAs by a proactive strategy; Springer; Cluster Computing-the Journal Of Networks Software Tools And Applications; 17; 2; 10-2014; 219-229
1386-7857
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10586-013-0321-4
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10586-013-0321-4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980907781193728
score 13.004268