Enhancing distributed EAs by a proactive strategy
- Autores
- Salto, Carolina; Luna, Francisco; Alba, Enrique
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we propose a new distributed evolutionary algorithm that uses a proactive strategy to adapt its migration policy and the mutation rate. The proactive decision is carried out locally in each subpopulation based on the entropy of that subpopulation. In that way, each subpopulation can change their own incoming flow of individuals by asking their neighbors for more frequent or less frequent migrations in order to maintain the genetic diversity at a desired level. Moreover, this proactive strategy is reinforced by adapting the mutation rate while the algorithm is searching for the problem solution. All these strategies avoid the subpopulations to get trapped into local minima. We conduct computational experiments on large instances of the NK landscape problem which have shown that our proactive approach outperforms traditional dEAs, particularly for not highly rugged landscapes, in which it does not only reaches the most accurate solutions, but it does the fastest.
Fil: Salto, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa; Argentina
Fil: Luna, Francisco. Universidad Carlos III de Madrid; España
Fil: Alba, Enrique. Universidad de Málaga; España - Materia
-
Proactive Behaviour
Distributed Eas
Migration Period - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/36446
Ver los metadatos del registro completo
id |
CONICETDig_d9f6b69042c027810250c7e9114d1baa |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/36446 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Enhancing distributed EAs by a proactive strategySalto, CarolinaLuna, FranciscoAlba, EnriqueProactive BehaviourDistributed EasMigration Periodhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this work we propose a new distributed evolutionary algorithm that uses a proactive strategy to adapt its migration policy and the mutation rate. The proactive decision is carried out locally in each subpopulation based on the entropy of that subpopulation. In that way, each subpopulation can change their own incoming flow of individuals by asking their neighbors for more frequent or less frequent migrations in order to maintain the genetic diversity at a desired level. Moreover, this proactive strategy is reinforced by adapting the mutation rate while the algorithm is searching for the problem solution. All these strategies avoid the subpopulations to get trapped into local minima. We conduct computational experiments on large instances of the NK landscape problem which have shown that our proactive approach outperforms traditional dEAs, particularly for not highly rugged landscapes, in which it does not only reaches the most accurate solutions, but it does the fastest.Fil: Salto, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa; ArgentinaFil: Luna, Francisco. Universidad Carlos III de Madrid; EspañaFil: Alba, Enrique. Universidad de Málaga; EspañaSpringer2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/36446Salto, Carolina; Luna, Francisco; Alba, Enrique; Enhancing distributed EAs by a proactive strategy; Springer; Cluster Computing-the Journal Of Networks Software Tools And Applications; 17; 2; 10-2014; 219-2291386-7857CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10586-013-0321-4info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10586-013-0321-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:16:39Zoai:ri.conicet.gov.ar:11336/36446instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:16:39.999CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Enhancing distributed EAs by a proactive strategy |
title |
Enhancing distributed EAs by a proactive strategy |
spellingShingle |
Enhancing distributed EAs by a proactive strategy Salto, Carolina Proactive Behaviour Distributed Eas Migration Period |
title_short |
Enhancing distributed EAs by a proactive strategy |
title_full |
Enhancing distributed EAs by a proactive strategy |
title_fullStr |
Enhancing distributed EAs by a proactive strategy |
title_full_unstemmed |
Enhancing distributed EAs by a proactive strategy |
title_sort |
Enhancing distributed EAs by a proactive strategy |
dc.creator.none.fl_str_mv |
Salto, Carolina Luna, Francisco Alba, Enrique |
author |
Salto, Carolina |
author_facet |
Salto, Carolina Luna, Francisco Alba, Enrique |
author_role |
author |
author2 |
Luna, Francisco Alba, Enrique |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Proactive Behaviour Distributed Eas Migration Period |
topic |
Proactive Behaviour Distributed Eas Migration Period |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we propose a new distributed evolutionary algorithm that uses a proactive strategy to adapt its migration policy and the mutation rate. The proactive decision is carried out locally in each subpopulation based on the entropy of that subpopulation. In that way, each subpopulation can change their own incoming flow of individuals by asking their neighbors for more frequent or less frequent migrations in order to maintain the genetic diversity at a desired level. Moreover, this proactive strategy is reinforced by adapting the mutation rate while the algorithm is searching for the problem solution. All these strategies avoid the subpopulations to get trapped into local minima. We conduct computational experiments on large instances of the NK landscape problem which have shown that our proactive approach outperforms traditional dEAs, particularly for not highly rugged landscapes, in which it does not only reaches the most accurate solutions, but it does the fastest. Fil: Salto, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa; Argentina Fil: Luna, Francisco. Universidad Carlos III de Madrid; España Fil: Alba, Enrique. Universidad de Málaga; España |
description |
In this work we propose a new distributed evolutionary algorithm that uses a proactive strategy to adapt its migration policy and the mutation rate. The proactive decision is carried out locally in each subpopulation based on the entropy of that subpopulation. In that way, each subpopulation can change their own incoming flow of individuals by asking their neighbors for more frequent or less frequent migrations in order to maintain the genetic diversity at a desired level. Moreover, this proactive strategy is reinforced by adapting the mutation rate while the algorithm is searching for the problem solution. All these strategies avoid the subpopulations to get trapped into local minima. We conduct computational experiments on large instances of the NK landscape problem which have shown that our proactive approach outperforms traditional dEAs, particularly for not highly rugged landscapes, in which it does not only reaches the most accurate solutions, but it does the fastest. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/36446 Salto, Carolina; Luna, Francisco; Alba, Enrique; Enhancing distributed EAs by a proactive strategy; Springer; Cluster Computing-the Journal Of Networks Software Tools And Applications; 17; 2; 10-2014; 219-229 1386-7857 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/36446 |
identifier_str_mv |
Salto, Carolina; Luna, Francisco; Alba, Enrique; Enhancing distributed EAs by a proactive strategy; Springer; Cluster Computing-the Journal Of Networks Software Tools And Applications; 17; 2; 10-2014; 219-229 1386-7857 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10586-013-0321-4 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10586-013-0321-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980907781193728 |
score |
13.004268 |