Crystal structure and local order of nanocrystalline zirconia-based solid solutions
- Autores
- Fabregas, Ismael Oscar; Lamas, Diego Germán; Acuña, Leandro Marcelo; Walsoe, Noemi Elizabeth; Craievich, Aldo Felix; Fantini, M. C. A.; Prado, R. J.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Crystal and local structures long- and short-range order, respectively of four nanocrystalline zirconia-based solid solutions—ZrO2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination spherelong- and short-range order, respectively of four nanocrystalline zirconia-based solid solutions—ZrO2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphereXRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphereEXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere.
Fil: Fabregas, Ismael Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas. Centro de Investigaciones en Sólidos; Argentina
Fil: Lamas, Diego Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas. Centro de Investigaciones en Sólidos; Argentina
Fil: Acuña, Leandro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas. Centro de Investigaciones en Sólidos; Argentina
Fil: Walsoe, Noemi Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas. Centro de Investigaciones en Sólidos; Argentina
Fil: Craievich, Aldo Felix. Universidade de Sao Paulo; Brasil
Fil: Fantini, M. C. A.. Universidade de Sao Paulo; Brasil
Fil: Prado, R. J.. Universidade Federal Do Mato Grosso; - Materia
-
SYNCHROTRON X-RAY DIFFRACTION
EXAFS
ZIRCONIA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/245044
Ver los metadatos del registro completo
id |
CONICETDig_d94f9eaf79b2d6dcf98a4b8d755fa610 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/245044 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Crystal structure and local order of nanocrystalline zirconia-based solid solutionsFabregas, Ismael OscarLamas, Diego GermánAcuña, Leandro MarceloWalsoe, Noemi ElizabethCraievich, Aldo FelixFantini, M. C. A.Prado, R. J.SYNCHROTRON X-RAY DIFFRACTIONEXAFSZIRCONIAhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Crystal and local structures long- and short-range order, respectively of four nanocrystalline zirconia-based solid solutions—ZrO2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination spherelong- and short-range order, respectively of four nanocrystalline zirconia-based solid solutions—ZrO2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphereXRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphereEXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere.Fil: Fabregas, Ismael Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas. Centro de Investigaciones en Sólidos; ArgentinaFil: Lamas, Diego Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas. Centro de Investigaciones en Sólidos; ArgentinaFil: Acuña, Leandro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas. Centro de Investigaciones en Sólidos; ArgentinaFil: Walsoe, Noemi Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas. Centro de Investigaciones en Sólidos; ArgentinaFil: Craievich, Aldo Felix. Universidade de Sao Paulo; BrasilFil: Fantini, M. C. A.. Universidade de Sao Paulo; BrasilFil: Prado, R. J.. Universidade Federal Do Mato Grosso;Cambridge University Press2008-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/245044Fabregas, Ismael Oscar; Lamas, Diego Germán; Acuña, Leandro Marcelo; Walsoe, Noemi Elizabeth; Craievich, Aldo Felix; et al.; Crystal structure and local order of nanocrystalline zirconia-based solid solutions; Cambridge University Press; Powder Diffraction; 23; S1; 6-2008; S46-S550885-7156CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/powder-diffraction/article/abs/crystal-structure-and-local-order-of-nanocrystalline-zirconiabased-solid-solutions/03562956ACA0C38880B89697757661EDinfo:eu-repo/semantics/altIdentifier/doi/10.1154/1.2903503info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:13Zoai:ri.conicet.gov.ar:11336/245044instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:13.368CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Crystal structure and local order of nanocrystalline zirconia-based solid solutions |
title |
Crystal structure and local order of nanocrystalline zirconia-based solid solutions |
spellingShingle |
Crystal structure and local order of nanocrystalline zirconia-based solid solutions Fabregas, Ismael Oscar SYNCHROTRON X-RAY DIFFRACTION EXAFS ZIRCONIA |
title_short |
Crystal structure and local order of nanocrystalline zirconia-based solid solutions |
title_full |
Crystal structure and local order of nanocrystalline zirconia-based solid solutions |
title_fullStr |
Crystal structure and local order of nanocrystalline zirconia-based solid solutions |
title_full_unstemmed |
Crystal structure and local order of nanocrystalline zirconia-based solid solutions |
title_sort |
Crystal structure and local order of nanocrystalline zirconia-based solid solutions |
dc.creator.none.fl_str_mv |
Fabregas, Ismael Oscar Lamas, Diego Germán Acuña, Leandro Marcelo Walsoe, Noemi Elizabeth Craievich, Aldo Felix Fantini, M. C. A. Prado, R. J. |
author |
Fabregas, Ismael Oscar |
author_facet |
Fabregas, Ismael Oscar Lamas, Diego Germán Acuña, Leandro Marcelo Walsoe, Noemi Elizabeth Craievich, Aldo Felix Fantini, M. C. A. Prado, R. J. |
author_role |
author |
author2 |
Lamas, Diego Germán Acuña, Leandro Marcelo Walsoe, Noemi Elizabeth Craievich, Aldo Felix Fantini, M. C. A. Prado, R. J. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
SYNCHROTRON X-RAY DIFFRACTION EXAFS ZIRCONIA |
topic |
SYNCHROTRON X-RAY DIFFRACTION EXAFS ZIRCONIA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Crystal and local structures long- and short-range order, respectively of four nanocrystalline zirconia-based solid solutions—ZrO2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination spherelong- and short-range order, respectively of four nanocrystalline zirconia-based solid solutions—ZrO2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphereXRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphereEXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere. Fil: Fabregas, Ismael Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas. Centro de Investigaciones en Sólidos; Argentina Fil: Lamas, Diego Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas. Centro de Investigaciones en Sólidos; Argentina Fil: Acuña, Leandro Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas. Centro de Investigaciones en Sólidos; Argentina Fil: Walsoe, Noemi Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Científicas y Técnicas de las Fuerzas Armadas. Centro de Investigaciones en Sólidos; Argentina Fil: Craievich, Aldo Felix. Universidade de Sao Paulo; Brasil Fil: Fantini, M. C. A.. Universidade de Sao Paulo; Brasil Fil: Prado, R. J.. Universidade Federal Do Mato Grosso; |
description |
Crystal and local structures long- and short-range order, respectively of four nanocrystalline zirconia-based solid solutions—ZrO2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination spherelong- and short-range order, respectively of four nanocrystalline zirconia-based solid solutions—ZrO2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction XRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphereXRD and extended X-ray absorption fine structure EXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphereEXAFS spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3 contents 6 and 2.8 mol %, respectively exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3 contents 16 and 12 mol %, respectively have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/245044 Fabregas, Ismael Oscar; Lamas, Diego Germán; Acuña, Leandro Marcelo; Walsoe, Noemi Elizabeth; Craievich, Aldo Felix; et al.; Crystal structure and local order of nanocrystalline zirconia-based solid solutions; Cambridge University Press; Powder Diffraction; 23; S1; 6-2008; S46-S55 0885-7156 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/245044 |
identifier_str_mv |
Fabregas, Ismael Oscar; Lamas, Diego Germán; Acuña, Leandro Marcelo; Walsoe, Noemi Elizabeth; Craievich, Aldo Felix; et al.; Crystal structure and local order of nanocrystalline zirconia-based solid solutions; Cambridge University Press; Powder Diffraction; 23; S1; 6-2008; S46-S55 0885-7156 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/powder-diffraction/article/abs/crystal-structure-and-local-order-of-nanocrystalline-zirconiabased-solid-solutions/03562956ACA0C38880B89697757661ED info:eu-repo/semantics/altIdentifier/doi/10.1154/1.2903503 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614027472273408 |
score |
13.070432 |