In silico generation of tumor invasion patterns
- Autores
- Luján, Emmanuel; Soba, Alejandro; Visacovsky, Nicolás; Guerra, Liliana Noemi; Marshall, Guillermo Ricardo; Suárez, Cecilia Ana
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- There is much bibliography about mathematical models of tumor growth based on reaction-diffusion equations that describe during the time the proliferation and invasion of tumor cells into peripheric host tissue. In a previous work we have developed a model of this kind that describe a glioma growth inside the human brain (Suárez et al 2012). Here we present a derived of this model applied to the growth and invasion of multicellular spheroids of the LM3 cell line immersed in a collagen I matrix, an in vitro model of a microtumor in avascular stage (preangiogenic). It is known that invasion patterns in this model depend on the cell line used as well as on the physical characteristics and chemical components of the surrounding matrix. The mathematical model initiates from a unique tumor cell that proliferates (monoclonal tumor origin) and then considers two stages: an initial benign stage with only proliferation and a later malign stage where invasion starts. The reaction term of the equation considers a logistic cell proliferation and the diffusion term, based on the Fick's law, simulates the volumetric growth of the spheroid as well as the invasion of tumor cells in host tissue. There is also a third term of radial invasion derived from a source of cells located in the spheroid surface. Parameter ranges related to invasion patterns and morphology were obtained from the analysis of experimental images of spheroid invasion. When the model were breed with these ranges, it was able of generate aleatory invasion patterns similar to the experimentally observed. This kind of experimental-numerical interaction has a wide application potential at the moment of predicting the clinical behaviour of a tumor in a patient-specific way in base on biopsy tissue obtained from a given patient.
Fil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
Fil: Visacovsky, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Guerra, Liliana Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marshall, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
VI Argentinian Conference of Bioinformatics and Computational Biology
Argentina
Universidad Nacional del Sur - Materia
-
TUMOR INVASION
Modelling
In Silico - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/210930
Ver los metadatos del registro completo
id |
CONICETDig_d76ee1f40e003c282ef098d55d179ee9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/210930 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
In silico generation of tumor invasion patternsLuján, EmmanuelSoba, AlejandroVisacovsky, NicolásGuerra, Liliana NoemiMarshall, Guillermo RicardoSuárez, Cecilia AnaTUMOR INVASIONModellingIn Silicohttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1There is much bibliography about mathematical models of tumor growth based on reaction-diffusion equations that describe during the time the proliferation and invasion of tumor cells into peripheric host tissue. In a previous work we have developed a model of this kind that describe a glioma growth inside the human brain (Suárez et al 2012). Here we present a derived of this model applied to the growth and invasion of multicellular spheroids of the LM3 cell line immersed in a collagen I matrix, an in vitro model of a microtumor in avascular stage (preangiogenic). It is known that invasion patterns in this model depend on the cell line used as well as on the physical characteristics and chemical components of the surrounding matrix. The mathematical model initiates from a unique tumor cell that proliferates (monoclonal tumor origin) and then considers two stages: an initial benign stage with only proliferation and a later malign stage where invasion starts. The reaction term of the equation considers a logistic cell proliferation and the diffusion term, based on the Fick's law, simulates the volumetric growth of the spheroid as well as the invasion of tumor cells in host tissue. There is also a third term of radial invasion derived from a source of cells located in the spheroid surface. Parameter ranges related to invasion patterns and morphology were obtained from the analysis of experimental images of spheroid invasion. When the model were breed with these ranges, it was able of generate aleatory invasion patterns similar to the experimentally observed. This kind of experimental-numerical interaction has a wide application potential at the moment of predicting the clinical behaviour of a tumor in a patient-specific way in base on biopsy tissue obtained from a given patient.Fil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; ArgentinaFil: Visacovsky, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Guerra, Liliana Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marshall, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaVI Argentinian Conference of Bioinformatics and Computational BiologyArgentinaUniversidad Nacional del SurUniversidad Nacional del Sur2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210930In silico generation of tumor invasion patterns; VI Argentinian Conference of Bioinformatics and Computational Biology; Argentina; 2015; 1-1CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://lidecc.cs.uns.edu.ar/cab2c2015/proceedings/handle/1234/27info:eu-repo/semantics/altIdentifier/url/http://lidecc.cs.uns.edu.ar/cab2c2015/proceedings/handle/1234/67Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:02Zoai:ri.conicet.gov.ar:11336/210930instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:03.181CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
In silico generation of tumor invasion patterns |
title |
In silico generation of tumor invasion patterns |
spellingShingle |
In silico generation of tumor invasion patterns Luján, Emmanuel TUMOR INVASION Modelling In Silico |
title_short |
In silico generation of tumor invasion patterns |
title_full |
In silico generation of tumor invasion patterns |
title_fullStr |
In silico generation of tumor invasion patterns |
title_full_unstemmed |
In silico generation of tumor invasion patterns |
title_sort |
In silico generation of tumor invasion patterns |
dc.creator.none.fl_str_mv |
Luján, Emmanuel Soba, Alejandro Visacovsky, Nicolás Guerra, Liliana Noemi Marshall, Guillermo Ricardo Suárez, Cecilia Ana |
author |
Luján, Emmanuel |
author_facet |
Luján, Emmanuel Soba, Alejandro Visacovsky, Nicolás Guerra, Liliana Noemi Marshall, Guillermo Ricardo Suárez, Cecilia Ana |
author_role |
author |
author2 |
Soba, Alejandro Visacovsky, Nicolás Guerra, Liliana Noemi Marshall, Guillermo Ricardo Suárez, Cecilia Ana |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
TUMOR INVASION Modelling In Silico |
topic |
TUMOR INVASION Modelling In Silico |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
There is much bibliography about mathematical models of tumor growth based on reaction-diffusion equations that describe during the time the proliferation and invasion of tumor cells into peripheric host tissue. In a previous work we have developed a model of this kind that describe a glioma growth inside the human brain (Suárez et al 2012). Here we present a derived of this model applied to the growth and invasion of multicellular spheroids of the LM3 cell line immersed in a collagen I matrix, an in vitro model of a microtumor in avascular stage (preangiogenic). It is known that invasion patterns in this model depend on the cell line used as well as on the physical characteristics and chemical components of the surrounding matrix. The mathematical model initiates from a unique tumor cell that proliferates (monoclonal tumor origin) and then considers two stages: an initial benign stage with only proliferation and a later malign stage where invasion starts. The reaction term of the equation considers a logistic cell proliferation and the diffusion term, based on the Fick's law, simulates the volumetric growth of the spheroid as well as the invasion of tumor cells in host tissue. There is also a third term of radial invasion derived from a source of cells located in the spheroid surface. Parameter ranges related to invasion patterns and morphology were obtained from the analysis of experimental images of spheroid invasion. When the model were breed with these ranges, it was able of generate aleatory invasion patterns similar to the experimentally observed. This kind of experimental-numerical interaction has a wide application potential at the moment of predicting the clinical behaviour of a tumor in a patient-specific way in base on biopsy tissue obtained from a given patient. Fil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina Fil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina Fil: Visacovsky, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Guerra, Liliana Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Marshall, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina VI Argentinian Conference of Bioinformatics and Computational Biology Argentina Universidad Nacional del Sur |
description |
There is much bibliography about mathematical models of tumor growth based on reaction-diffusion equations that describe during the time the proliferation and invasion of tumor cells into peripheric host tissue. In a previous work we have developed a model of this kind that describe a glioma growth inside the human brain (Suárez et al 2012). Here we present a derived of this model applied to the growth and invasion of multicellular spheroids of the LM3 cell line immersed in a collagen I matrix, an in vitro model of a microtumor in avascular stage (preangiogenic). It is known that invasion patterns in this model depend on the cell line used as well as on the physical characteristics and chemical components of the surrounding matrix. The mathematical model initiates from a unique tumor cell that proliferates (monoclonal tumor origin) and then considers two stages: an initial benign stage with only proliferation and a later malign stage where invasion starts. The reaction term of the equation considers a logistic cell proliferation and the diffusion term, based on the Fick's law, simulates the volumetric growth of the spheroid as well as the invasion of tumor cells in host tissue. There is also a third term of radial invasion derived from a source of cells located in the spheroid surface. Parameter ranges related to invasion patterns and morphology were obtained from the analysis of experimental images of spheroid invasion. When the model were breed with these ranges, it was able of generate aleatory invasion patterns similar to the experimentally observed. This kind of experimental-numerical interaction has a wide application potential at the moment of predicting the clinical behaviour of a tumor in a patient-specific way in base on biopsy tissue obtained from a given patient. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/210930 In silico generation of tumor invasion patterns; VI Argentinian Conference of Bioinformatics and Computational Biology; Argentina; 2015; 1-1 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/210930 |
identifier_str_mv |
In silico generation of tumor invasion patterns; VI Argentinian Conference of Bioinformatics and Computational Biology; Argentina; 2015; 1-1 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://lidecc.cs.uns.edu.ar/cab2c2015/proceedings/handle/1234/27 info:eu-repo/semantics/altIdentifier/url/http://lidecc.cs.uns.edu.ar/cab2c2015/proceedings/handle/1234/67 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Universidad Nacional del Sur |
publisher.none.fl_str_mv |
Universidad Nacional del Sur |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613754721927168 |
score |
13.070432 |