In silico generation of tumor invasion patterns

Autores
Luján, Emmanuel; Soba, Alejandro; Visacovsky, Nicolás; Guerra, Liliana Noemi; Marshall, Guillermo Ricardo; Suárez, Cecilia Ana
Año de publicación
2015
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
There is much bibliography about mathematical models of tumor growth based on reaction-diffusion equations that describe during the time the proliferation and invasion of tumor cells into peripheric host tissue. In a previous work we have developed a model of this kind that describe a glioma growth inside the human brain (Suárez et al 2012). Here we present a derived of this model applied to the growth and invasion of multicellular spheroids of the LM3 cell line immersed in a collagen I matrix, an in vitro model of a microtumor in avascular stage (preangiogenic). It is known that invasion patterns in this model depend on the cell line used as well as on the physical characteristics and chemical components of the surrounding matrix. The mathematical model initiates from a unique tumor cell that proliferates (monoclonal tumor origin) and then considers two stages: an initial benign stage with only proliferation and a later malign stage where invasion starts. The reaction term of the equation considers a logistic cell proliferation and the diffusion term, based on the Fick's law, simulates the volumetric growth of the spheroid as well as the invasion of tumor cells in host tissue. There is also a third term of radial invasion derived from a source of cells located in the spheroid surface. Parameter ranges related to invasion patterns and morphology were obtained from the analysis of experimental images of spheroid invasion. When the model were breed with these ranges, it was able of generate aleatory invasion patterns similar to the experimentally observed. This kind of experimental-numerical interaction has a wide application potential at the moment of predicting the clinical behaviour of a tumor in a patient-specific way in base on biopsy tissue obtained from a given patient.
Fil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
Fil: Visacovsky, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Guerra, Liliana Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marshall, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
VI Argentinian Conference of Bioinformatics and Computational Biology
Argentina
Universidad Nacional del Sur
Materia
TUMOR INVASION
Modelling
In Silico
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/210930

id CONICETDig_d76ee1f40e003c282ef098d55d179ee9
oai_identifier_str oai:ri.conicet.gov.ar:11336/210930
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling In silico generation of tumor invasion patternsLuján, EmmanuelSoba, AlejandroVisacovsky, NicolásGuerra, Liliana NoemiMarshall, Guillermo RicardoSuárez, Cecilia AnaTUMOR INVASIONModellingIn Silicohttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1There is much bibliography about mathematical models of tumor growth based on reaction-diffusion equations that describe during the time the proliferation and invasion of tumor cells into peripheric host tissue. In a previous work we have developed a model of this kind that describe a glioma growth inside the human brain (Suárez et al 2012). Here we present a derived of this model applied to the growth and invasion of multicellular spheroids of the LM3 cell line immersed in a collagen I matrix, an in vitro model of a microtumor in avascular stage (preangiogenic). It is known that invasion patterns in this model depend on the cell line used as well as on the physical characteristics and chemical components of the surrounding matrix. The mathematical model initiates from a unique tumor cell that proliferates (monoclonal tumor origin) and then considers two stages: an initial benign stage with only proliferation and a later malign stage where invasion starts. The reaction term of the equation considers a logistic cell proliferation and the diffusion term, based on the Fick's law, simulates the volumetric growth of the spheroid as well as the invasion of tumor cells in host tissue. There is also a third term of radial invasion derived from a source of cells located in the spheroid surface. Parameter ranges related to invasion patterns and morphology were obtained from the analysis of experimental images of spheroid invasion. When the model were breed with these ranges, it was able of generate aleatory invasion patterns similar to the experimentally observed. This kind of experimental-numerical interaction has a wide application potential at the moment of predicting the clinical behaviour of a tumor in a patient-specific way in base on biopsy tissue obtained from a given patient.Fil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; ArgentinaFil: Visacovsky, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Guerra, Liliana Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marshall, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaVI Argentinian Conference of Bioinformatics and Computational BiologyArgentinaUniversidad Nacional del SurUniversidad Nacional del Sur2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210930In silico generation of tumor invasion patterns; VI Argentinian Conference of Bioinformatics and Computational Biology; Argentina; 2015; 1-1CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://lidecc.cs.uns.edu.ar/cab2c2015/proceedings/handle/1234/27info:eu-repo/semantics/altIdentifier/url/http://lidecc.cs.uns.edu.ar/cab2c2015/proceedings/handle/1234/67Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:59:02Zoai:ri.conicet.gov.ar:11336/210930instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:59:03.181CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv In silico generation of tumor invasion patterns
title In silico generation of tumor invasion patterns
spellingShingle In silico generation of tumor invasion patterns
Luján, Emmanuel
TUMOR INVASION
Modelling
In Silico
title_short In silico generation of tumor invasion patterns
title_full In silico generation of tumor invasion patterns
title_fullStr In silico generation of tumor invasion patterns
title_full_unstemmed In silico generation of tumor invasion patterns
title_sort In silico generation of tumor invasion patterns
dc.creator.none.fl_str_mv Luján, Emmanuel
Soba, Alejandro
Visacovsky, Nicolás
Guerra, Liliana Noemi
Marshall, Guillermo Ricardo
Suárez, Cecilia Ana
author Luján, Emmanuel
author_facet Luján, Emmanuel
Soba, Alejandro
Visacovsky, Nicolás
Guerra, Liliana Noemi
Marshall, Guillermo Ricardo
Suárez, Cecilia Ana
author_role author
author2 Soba, Alejandro
Visacovsky, Nicolás
Guerra, Liliana Noemi
Marshall, Guillermo Ricardo
Suárez, Cecilia Ana
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv TUMOR INVASION
Modelling
In Silico
topic TUMOR INVASION
Modelling
In Silico
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv There is much bibliography about mathematical models of tumor growth based on reaction-diffusion equations that describe during the time the proliferation and invasion of tumor cells into peripheric host tissue. In a previous work we have developed a model of this kind that describe a glioma growth inside the human brain (Suárez et al 2012). Here we present a derived of this model applied to the growth and invasion of multicellular spheroids of the LM3 cell line immersed in a collagen I matrix, an in vitro model of a microtumor in avascular stage (preangiogenic). It is known that invasion patterns in this model depend on the cell line used as well as on the physical characteristics and chemical components of the surrounding matrix. The mathematical model initiates from a unique tumor cell that proliferates (monoclonal tumor origin) and then considers two stages: an initial benign stage with only proliferation and a later malign stage where invasion starts. The reaction term of the equation considers a logistic cell proliferation and the diffusion term, based on the Fick's law, simulates the volumetric growth of the spheroid as well as the invasion of tumor cells in host tissue. There is also a third term of radial invasion derived from a source of cells located in the spheroid surface. Parameter ranges related to invasion patterns and morphology were obtained from the analysis of experimental images of spheroid invasion. When the model were breed with these ranges, it was able of generate aleatory invasion patterns similar to the experimentally observed. This kind of experimental-numerical interaction has a wide application potential at the moment of predicting the clinical behaviour of a tumor in a patient-specific way in base on biopsy tissue obtained from a given patient.
Fil: Luján, Emmanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Soba, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
Fil: Visacovsky, Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Guerra, Liliana Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Marshall, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
VI Argentinian Conference of Bioinformatics and Computational Biology
Argentina
Universidad Nacional del Sur
description There is much bibliography about mathematical models of tumor growth based on reaction-diffusion equations that describe during the time the proliferation and invasion of tumor cells into peripheric host tissue. In a previous work we have developed a model of this kind that describe a glioma growth inside the human brain (Suárez et al 2012). Here we present a derived of this model applied to the growth and invasion of multicellular spheroids of the LM3 cell line immersed in a collagen I matrix, an in vitro model of a microtumor in avascular stage (preangiogenic). It is known that invasion patterns in this model depend on the cell line used as well as on the physical characteristics and chemical components of the surrounding matrix. The mathematical model initiates from a unique tumor cell that proliferates (monoclonal tumor origin) and then considers two stages: an initial benign stage with only proliferation and a later malign stage where invasion starts. The reaction term of the equation considers a logistic cell proliferation and the diffusion term, based on the Fick's law, simulates the volumetric growth of the spheroid as well as the invasion of tumor cells in host tissue. There is also a third term of radial invasion derived from a source of cells located in the spheroid surface. Parameter ranges related to invasion patterns and morphology were obtained from the analysis of experimental images of spheroid invasion. When the model were breed with these ranges, it was able of generate aleatory invasion patterns similar to the experimentally observed. This kind of experimental-numerical interaction has a wide application potential at the moment of predicting the clinical behaviour of a tumor in a patient-specific way in base on biopsy tissue obtained from a given patient.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/210930
In silico generation of tumor invasion patterns; VI Argentinian Conference of Bioinformatics and Computational Biology; Argentina; 2015; 1-1
CONICET Digital
CONICET
url http://hdl.handle.net/11336/210930
identifier_str_mv In silico generation of tumor invasion patterns; VI Argentinian Conference of Bioinformatics and Computational Biology; Argentina; 2015; 1-1
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://lidecc.cs.uns.edu.ar/cab2c2015/proceedings/handle/1234/27
info:eu-repo/semantics/altIdentifier/url/http://lidecc.cs.uns.edu.ar/cab2c2015/proceedings/handle/1234/67
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Nacional
dc.publisher.none.fl_str_mv Universidad Nacional del Sur
publisher.none.fl_str_mv Universidad Nacional del Sur
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613754721927168
score 13.070432