Site-specific spectroscopic measurement of spin and charge in (LuFeO3)m/(LuFe2O4)1 multiferroic superlattices

Autores
Fan, Shiyu; Das, Hena; Rébola, Alejandro Federico; Smith, Kevin; Mundy, Julia; Brooks, Charles; Holtz, Megan E.; Muller, David A.; Fennie, Craig J.; Ramesh, Ramamoorthy; Schlom, Darrell G.; McGill, Stephen; Musfeldt, Janice L.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Interface materials offer a means to achieve electrical control of ferrimagnetism at room temperature as was recently demonstrated in (LuFeO3)m/(LuFe2O4)1 superlattices. A challenge to understanding the inner workings of these complex magnetoelectric multiferroics is the multitude of distinct Fe centres and their associated environments. This is because macroscopic techniques characterize average responses rather than the role of individual iron centres. Here, we combine optical absorption, magnetic circular dichroism and first-principles calculations to uncover the origin of high-temperature magnetism in these superlattices and the charge-ordering pattern in the m = 3 member. In a significant conceptual advance, interface spectra establish how Lu-layer distortion selectively enhances the Fe2+ → Fe3+ charge-transfer contribution in the spin-up channel, strengthens the exchange interactions and increases the Curie temperature. Comparison of predicted and measured spectra also identifies a non-polar charge ordering arrangement in the LuFe2O4 layer. This site-specific spectroscopic approach opens the door to understanding engineered materials with multiple metal centres and strong entanglement.
Fil: Fan, Shiyu. University of Tennessee; Estados Unidos
Fil: Das, Hena. Cornell University; Estados Unidos
Fil: Rébola, Alejandro Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Smith, Kevin. University of Tennessee; Estados Unidos
Fil: Mundy, Julia. Harvard University; Estados Unidos. Cornell University; Estados Unidos
Fil: Brooks, Charles. Cornell University; Estados Unidos
Fil: Holtz, Megan E.. Cornell University; Estados Unidos
Fil: Muller, David A.. Cornell University; Estados Unidos
Fil: Fennie, Craig J.. Cornell University; Estados Unidos
Fil: Ramesh, Ramamoorthy. Lawrence Berkeley National Laboratory; Estados Unidos. University of California at Berkeley; Estados Unidos
Fil: Schlom, Darrell G.. Cornell University; Estados Unidos
Fil: McGill, Stephen. National High Magnetic Field Laboratory; Estados Unidos
Fil: Musfeldt, Janice L.. University of Tennessee; Estados Unidos
Materia
Multiferroics
Charge Order
Spectroscopy
Superlattices
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/183502

id CONICETDig_d6fcfc733eb4f180948307412a520fe1
oai_identifier_str oai:ri.conicet.gov.ar:11336/183502
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Site-specific spectroscopic measurement of spin and charge in (LuFeO3)m/(LuFe2O4)1 multiferroic superlatticesFan, ShiyuDas, HenaRébola, Alejandro FedericoSmith, KevinMundy, JuliaBrooks, CharlesHoltz, Megan E.Muller, David A.Fennie, Craig J.Ramesh, RamamoorthySchlom, Darrell G.McGill, StephenMusfeldt, Janice L.MultiferroicsCharge OrderSpectroscopySuperlatticeshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Interface materials offer a means to achieve electrical control of ferrimagnetism at room temperature as was recently demonstrated in (LuFeO3)m/(LuFe2O4)1 superlattices. A challenge to understanding the inner workings of these complex magnetoelectric multiferroics is the multitude of distinct Fe centres and their associated environments. This is because macroscopic techniques characterize average responses rather than the role of individual iron centres. Here, we combine optical absorption, magnetic circular dichroism and first-principles calculations to uncover the origin of high-temperature magnetism in these superlattices and the charge-ordering pattern in the m = 3 member. In a significant conceptual advance, interface spectra establish how Lu-layer distortion selectively enhances the Fe2+ → Fe3+ charge-transfer contribution in the spin-up channel, strengthens the exchange interactions and increases the Curie temperature. Comparison of predicted and measured spectra also identifies a non-polar charge ordering arrangement in the LuFe2O4 layer. This site-specific spectroscopic approach opens the door to understanding engineered materials with multiple metal centres and strong entanglement.Fil: Fan, Shiyu. University of Tennessee; Estados UnidosFil: Das, Hena. Cornell University; Estados UnidosFil: Rébola, Alejandro Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Smith, Kevin. University of Tennessee; Estados UnidosFil: Mundy, Julia. Harvard University; Estados Unidos. Cornell University; Estados UnidosFil: Brooks, Charles. Cornell University; Estados UnidosFil: Holtz, Megan E.. Cornell University; Estados UnidosFil: Muller, David A.. Cornell University; Estados UnidosFil: Fennie, Craig J.. Cornell University; Estados UnidosFil: Ramesh, Ramamoorthy. Lawrence Berkeley National Laboratory; Estados Unidos. University of California at Berkeley; Estados UnidosFil: Schlom, Darrell G.. Cornell University; Estados UnidosFil: McGill, Stephen. National High Magnetic Field Laboratory; Estados UnidosFil: Musfeldt, Janice L.. University of Tennessee; Estados UnidosNature2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/183502Fan, Shiyu; Das, Hena; Rébola, Alejandro Federico; Smith, Kevin; Mundy, Julia; et al.; Site-specific spectroscopic measurement of spin and charge in (LuFeO3)m/(LuFe2O4)1 multiferroic superlattices; Nature; Nature Communications; 11; 1; 12-2020; 1-92041-1723CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41467-020-19285-9info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-020-19285-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:06Zoai:ri.conicet.gov.ar:11336/183502instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:06.986CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Site-specific spectroscopic measurement of spin and charge in (LuFeO3)m/(LuFe2O4)1 multiferroic superlattices
title Site-specific spectroscopic measurement of spin and charge in (LuFeO3)m/(LuFe2O4)1 multiferroic superlattices
spellingShingle Site-specific spectroscopic measurement of spin and charge in (LuFeO3)m/(LuFe2O4)1 multiferroic superlattices
Fan, Shiyu
Multiferroics
Charge Order
Spectroscopy
Superlattices
title_short Site-specific spectroscopic measurement of spin and charge in (LuFeO3)m/(LuFe2O4)1 multiferroic superlattices
title_full Site-specific spectroscopic measurement of spin and charge in (LuFeO3)m/(LuFe2O4)1 multiferroic superlattices
title_fullStr Site-specific spectroscopic measurement of spin and charge in (LuFeO3)m/(LuFe2O4)1 multiferroic superlattices
title_full_unstemmed Site-specific spectroscopic measurement of spin and charge in (LuFeO3)m/(LuFe2O4)1 multiferroic superlattices
title_sort Site-specific spectroscopic measurement of spin and charge in (LuFeO3)m/(LuFe2O4)1 multiferroic superlattices
dc.creator.none.fl_str_mv Fan, Shiyu
Das, Hena
Rébola, Alejandro Federico
Smith, Kevin
Mundy, Julia
Brooks, Charles
Holtz, Megan E.
Muller, David A.
Fennie, Craig J.
Ramesh, Ramamoorthy
Schlom, Darrell G.
McGill, Stephen
Musfeldt, Janice L.
author Fan, Shiyu
author_facet Fan, Shiyu
Das, Hena
Rébola, Alejandro Federico
Smith, Kevin
Mundy, Julia
Brooks, Charles
Holtz, Megan E.
Muller, David A.
Fennie, Craig J.
Ramesh, Ramamoorthy
Schlom, Darrell G.
McGill, Stephen
Musfeldt, Janice L.
author_role author
author2 Das, Hena
Rébola, Alejandro Federico
Smith, Kevin
Mundy, Julia
Brooks, Charles
Holtz, Megan E.
Muller, David A.
Fennie, Craig J.
Ramesh, Ramamoorthy
Schlom, Darrell G.
McGill, Stephen
Musfeldt, Janice L.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Multiferroics
Charge Order
Spectroscopy
Superlattices
topic Multiferroics
Charge Order
Spectroscopy
Superlattices
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Interface materials offer a means to achieve electrical control of ferrimagnetism at room temperature as was recently demonstrated in (LuFeO3)m/(LuFe2O4)1 superlattices. A challenge to understanding the inner workings of these complex magnetoelectric multiferroics is the multitude of distinct Fe centres and their associated environments. This is because macroscopic techniques characterize average responses rather than the role of individual iron centres. Here, we combine optical absorption, magnetic circular dichroism and first-principles calculations to uncover the origin of high-temperature magnetism in these superlattices and the charge-ordering pattern in the m = 3 member. In a significant conceptual advance, interface spectra establish how Lu-layer distortion selectively enhances the Fe2+ → Fe3+ charge-transfer contribution in the spin-up channel, strengthens the exchange interactions and increases the Curie temperature. Comparison of predicted and measured spectra also identifies a non-polar charge ordering arrangement in the LuFe2O4 layer. This site-specific spectroscopic approach opens the door to understanding engineered materials with multiple metal centres and strong entanglement.
Fil: Fan, Shiyu. University of Tennessee; Estados Unidos
Fil: Das, Hena. Cornell University; Estados Unidos
Fil: Rébola, Alejandro Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Smith, Kevin. University of Tennessee; Estados Unidos
Fil: Mundy, Julia. Harvard University; Estados Unidos. Cornell University; Estados Unidos
Fil: Brooks, Charles. Cornell University; Estados Unidos
Fil: Holtz, Megan E.. Cornell University; Estados Unidos
Fil: Muller, David A.. Cornell University; Estados Unidos
Fil: Fennie, Craig J.. Cornell University; Estados Unidos
Fil: Ramesh, Ramamoorthy. Lawrence Berkeley National Laboratory; Estados Unidos. University of California at Berkeley; Estados Unidos
Fil: Schlom, Darrell G.. Cornell University; Estados Unidos
Fil: McGill, Stephen. National High Magnetic Field Laboratory; Estados Unidos
Fil: Musfeldt, Janice L.. University of Tennessee; Estados Unidos
description Interface materials offer a means to achieve electrical control of ferrimagnetism at room temperature as was recently demonstrated in (LuFeO3)m/(LuFe2O4)1 superlattices. A challenge to understanding the inner workings of these complex magnetoelectric multiferroics is the multitude of distinct Fe centres and their associated environments. This is because macroscopic techniques characterize average responses rather than the role of individual iron centres. Here, we combine optical absorption, magnetic circular dichroism and first-principles calculations to uncover the origin of high-temperature magnetism in these superlattices and the charge-ordering pattern in the m = 3 member. In a significant conceptual advance, interface spectra establish how Lu-layer distortion selectively enhances the Fe2+ → Fe3+ charge-transfer contribution in the spin-up channel, strengthens the exchange interactions and increases the Curie temperature. Comparison of predicted and measured spectra also identifies a non-polar charge ordering arrangement in the LuFe2O4 layer. This site-specific spectroscopic approach opens the door to understanding engineered materials with multiple metal centres and strong entanglement.
publishDate 2020
dc.date.none.fl_str_mv 2020-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/183502
Fan, Shiyu; Das, Hena; Rébola, Alejandro Federico; Smith, Kevin; Mundy, Julia; et al.; Site-specific spectroscopic measurement of spin and charge in (LuFeO3)m/(LuFe2O4)1 multiferroic superlattices; Nature; Nature Communications; 11; 1; 12-2020; 1-9
2041-1723
CONICET Digital
CONICET
url http://hdl.handle.net/11336/183502
identifier_str_mv Fan, Shiyu; Das, Hena; Rébola, Alejandro Federico; Smith, Kevin; Mundy, Julia; et al.; Site-specific spectroscopic measurement of spin and charge in (LuFeO3)m/(LuFe2O4)1 multiferroic superlattices; Nature; Nature Communications; 11; 1; 12-2020; 1-9
2041-1723
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41467-020-19285-9
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41467-020-19285-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature
publisher.none.fl_str_mv Nature
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614477894385664
score 13.070432