Competition between spin-induced charge instabilities in underdoped cuprates
- Autores
- Zeyher, Roland; Greco, Andres Francisco
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the static charge correlation function in a one-band model on a square lattice. The Hamiltonian consists of effective hoppings of the electrons between the lattice sites and the Heisenberg Hamiltonian. Approximating the irreducible charge correlation function by a single bubble yields the ladder approximation for the charge correlation function. In this approximation, one finds, in general, three charge instabilities - two of them are due to nesting, the third one is the flux phase instability. Since these instabilities cannot explain the experiments in hole-doped cuprates, we have included in the irreducible charge correlation function also Aslamasov-Larkin (AL) diagrams where charge fluctuations interact with products of spin fluctuations. We then find at high temperatures a nematic or d-wave Pomeranchuk instability with a very small momentum. Its transition temperature decreases roughly linearly with doping in the underdoped region and vanishes near optimal doping. Decreasing the temperature further, a secondary axial charge-density wave (CDW) instability appears with mainly d-wave symmetry and a wave vector somewhat larger than the distance between nearest-neighbor hot spots. At still lower temperatures, the diagonal flux phase instability emerges. A closer look shows that the AL diagrams enhance mainly axial and not diagonal charge fluctuations in our one-band model. This is the main reason why axial and not diagonal instabilities are the leading ones in agreement with experiment. The two instabilities due to nesting vanish already at very low temperatures and do not play any major role in the phase diagram. Remarkable is that the nematic and the axial CDW instabilities show a large reentrant behavior.
Fil: Zeyher, Roland. Max Planck Institute For Solid State Research; Alemania
Fil: Greco, Andres Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina - Materia
-
cupratos
charge order - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100741
Ver los metadatos del registro completo
id |
CONICETDig_6bdbeb88cc811466e4223864b66e14cc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100741 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Competition between spin-induced charge instabilities in underdoped cupratesZeyher, RolandGreco, Andres Franciscocupratoscharge orderhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the static charge correlation function in a one-band model on a square lattice. The Hamiltonian consists of effective hoppings of the electrons between the lattice sites and the Heisenberg Hamiltonian. Approximating the irreducible charge correlation function by a single bubble yields the ladder approximation for the charge correlation function. In this approximation, one finds, in general, three charge instabilities - two of them are due to nesting, the third one is the flux phase instability. Since these instabilities cannot explain the experiments in hole-doped cuprates, we have included in the irreducible charge correlation function also Aslamasov-Larkin (AL) diagrams where charge fluctuations interact with products of spin fluctuations. We then find at high temperatures a nematic or d-wave Pomeranchuk instability with a very small momentum. Its transition temperature decreases roughly linearly with doping in the underdoped region and vanishes near optimal doping. Decreasing the temperature further, a secondary axial charge-density wave (CDW) instability appears with mainly d-wave symmetry and a wave vector somewhat larger than the distance between nearest-neighbor hot spots. At still lower temperatures, the diagonal flux phase instability emerges. A closer look shows that the AL diagrams enhance mainly axial and not diagonal charge fluctuations in our one-band model. This is the main reason why axial and not diagonal instabilities are the leading ones in agreement with experiment. The two instabilities due to nesting vanish already at very low temperatures and do not play any major role in the phase diagram. Remarkable is that the nematic and the axial CDW instabilities show a large reentrant behavior.Fil: Zeyher, Roland. Max Planck Institute For Solid State Research; AlemaniaFil: Greco, Andres Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaAmerican Physical Society2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100741Zeyher, Roland; Greco, Andres Francisco; Competition between spin-induced charge instabilities in underdoped cuprates; American Physical Society; Physical Review B; 98; 22; 12-2018; 1-120163-1829CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.224504info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.98.224504info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:41Zoai:ri.conicet.gov.ar:11336/100741instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:41.847CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Competition between spin-induced charge instabilities in underdoped cuprates |
title |
Competition between spin-induced charge instabilities in underdoped cuprates |
spellingShingle |
Competition between spin-induced charge instabilities in underdoped cuprates Zeyher, Roland cupratos charge order |
title_short |
Competition between spin-induced charge instabilities in underdoped cuprates |
title_full |
Competition between spin-induced charge instabilities in underdoped cuprates |
title_fullStr |
Competition between spin-induced charge instabilities in underdoped cuprates |
title_full_unstemmed |
Competition between spin-induced charge instabilities in underdoped cuprates |
title_sort |
Competition between spin-induced charge instabilities in underdoped cuprates |
dc.creator.none.fl_str_mv |
Zeyher, Roland Greco, Andres Francisco |
author |
Zeyher, Roland |
author_facet |
Zeyher, Roland Greco, Andres Francisco |
author_role |
author |
author2 |
Greco, Andres Francisco |
author2_role |
author |
dc.subject.none.fl_str_mv |
cupratos charge order |
topic |
cupratos charge order |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the static charge correlation function in a one-band model on a square lattice. The Hamiltonian consists of effective hoppings of the electrons between the lattice sites and the Heisenberg Hamiltonian. Approximating the irreducible charge correlation function by a single bubble yields the ladder approximation for the charge correlation function. In this approximation, one finds, in general, three charge instabilities - two of them are due to nesting, the third one is the flux phase instability. Since these instabilities cannot explain the experiments in hole-doped cuprates, we have included in the irreducible charge correlation function also Aslamasov-Larkin (AL) diagrams where charge fluctuations interact with products of spin fluctuations. We then find at high temperatures a nematic or d-wave Pomeranchuk instability with a very small momentum. Its transition temperature decreases roughly linearly with doping in the underdoped region and vanishes near optimal doping. Decreasing the temperature further, a secondary axial charge-density wave (CDW) instability appears with mainly d-wave symmetry and a wave vector somewhat larger than the distance between nearest-neighbor hot spots. At still lower temperatures, the diagonal flux phase instability emerges. A closer look shows that the AL diagrams enhance mainly axial and not diagonal charge fluctuations in our one-band model. This is the main reason why axial and not diagonal instabilities are the leading ones in agreement with experiment. The two instabilities due to nesting vanish already at very low temperatures and do not play any major role in the phase diagram. Remarkable is that the nematic and the axial CDW instabilities show a large reentrant behavior. Fil: Zeyher, Roland. Max Planck Institute For Solid State Research; Alemania Fil: Greco, Andres Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina |
description |
We study the static charge correlation function in a one-band model on a square lattice. The Hamiltonian consists of effective hoppings of the electrons between the lattice sites and the Heisenberg Hamiltonian. Approximating the irreducible charge correlation function by a single bubble yields the ladder approximation for the charge correlation function. In this approximation, one finds, in general, three charge instabilities - two of them are due to nesting, the third one is the flux phase instability. Since these instabilities cannot explain the experiments in hole-doped cuprates, we have included in the irreducible charge correlation function also Aslamasov-Larkin (AL) diagrams where charge fluctuations interact with products of spin fluctuations. We then find at high temperatures a nematic or d-wave Pomeranchuk instability with a very small momentum. Its transition temperature decreases roughly linearly with doping in the underdoped region and vanishes near optimal doping. Decreasing the temperature further, a secondary axial charge-density wave (CDW) instability appears with mainly d-wave symmetry and a wave vector somewhat larger than the distance between nearest-neighbor hot spots. At still lower temperatures, the diagonal flux phase instability emerges. A closer look shows that the AL diagrams enhance mainly axial and not diagonal charge fluctuations in our one-band model. This is the main reason why axial and not diagonal instabilities are the leading ones in agreement with experiment. The two instabilities due to nesting vanish already at very low temperatures and do not play any major role in the phase diagram. Remarkable is that the nematic and the axial CDW instabilities show a large reentrant behavior. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100741 Zeyher, Roland; Greco, Andres Francisco; Competition between spin-induced charge instabilities in underdoped cuprates; American Physical Society; Physical Review B; 98; 22; 12-2018; 1-12 0163-1829 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/100741 |
identifier_str_mv |
Zeyher, Roland; Greco, Andres Francisco; Competition between spin-induced charge instabilities in underdoped cuprates; American Physical Society; Physical Review B; 98; 22; 12-2018; 1-12 0163-1829 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.224504 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.98.224504 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613939972800512 |
score |
13.070432 |