Competition between spin-induced charge instabilities in underdoped cuprates

Autores
Zeyher, Roland; Greco, Andres Francisco
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the static charge correlation function in a one-band model on a square lattice. The Hamiltonian consists of effective hoppings of the electrons between the lattice sites and the Heisenberg Hamiltonian. Approximating the irreducible charge correlation function by a single bubble yields the ladder approximation for the charge correlation function. In this approximation, one finds, in general, three charge instabilities - two of them are due to nesting, the third one is the flux phase instability. Since these instabilities cannot explain the experiments in hole-doped cuprates, we have included in the irreducible charge correlation function also Aslamasov-Larkin (AL) diagrams where charge fluctuations interact with products of spin fluctuations. We then find at high temperatures a nematic or d-wave Pomeranchuk instability with a very small momentum. Its transition temperature decreases roughly linearly with doping in the underdoped region and vanishes near optimal doping. Decreasing the temperature further, a secondary axial charge-density wave (CDW) instability appears with mainly d-wave symmetry and a wave vector somewhat larger than the distance between nearest-neighbor hot spots. At still lower temperatures, the diagonal flux phase instability emerges. A closer look shows that the AL diagrams enhance mainly axial and not diagonal charge fluctuations in our one-band model. This is the main reason why axial and not diagonal instabilities are the leading ones in agreement with experiment. The two instabilities due to nesting vanish already at very low temperatures and do not play any major role in the phase diagram. Remarkable is that the nematic and the axial CDW instabilities show a large reentrant behavior.
Fil: Zeyher, Roland. Max Planck Institute For Solid State Research; Alemania
Fil: Greco, Andres Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Materia
cupratos
charge order
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100741

id CONICETDig_6bdbeb88cc811466e4223864b66e14cc
oai_identifier_str oai:ri.conicet.gov.ar:11336/100741
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Competition between spin-induced charge instabilities in underdoped cupratesZeyher, RolandGreco, Andres Franciscocupratoscharge orderhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the static charge correlation function in a one-band model on a square lattice. The Hamiltonian consists of effective hoppings of the electrons between the lattice sites and the Heisenberg Hamiltonian. Approximating the irreducible charge correlation function by a single bubble yields the ladder approximation for the charge correlation function. In this approximation, one finds, in general, three charge instabilities - two of them are due to nesting, the third one is the flux phase instability. Since these instabilities cannot explain the experiments in hole-doped cuprates, we have included in the irreducible charge correlation function also Aslamasov-Larkin (AL) diagrams where charge fluctuations interact with products of spin fluctuations. We then find at high temperatures a nematic or d-wave Pomeranchuk instability with a very small momentum. Its transition temperature decreases roughly linearly with doping in the underdoped region and vanishes near optimal doping. Decreasing the temperature further, a secondary axial charge-density wave (CDW) instability appears with mainly d-wave symmetry and a wave vector somewhat larger than the distance between nearest-neighbor hot spots. At still lower temperatures, the diagonal flux phase instability emerges. A closer look shows that the AL diagrams enhance mainly axial and not diagonal charge fluctuations in our one-band model. This is the main reason why axial and not diagonal instabilities are the leading ones in agreement with experiment. The two instabilities due to nesting vanish already at very low temperatures and do not play any major role in the phase diagram. Remarkable is that the nematic and the axial CDW instabilities show a large reentrant behavior.Fil: Zeyher, Roland. Max Planck Institute For Solid State Research; AlemaniaFil: Greco, Andres Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaAmerican Physical Society2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100741Zeyher, Roland; Greco, Andres Francisco; Competition between spin-induced charge instabilities in underdoped cuprates; American Physical Society; Physical Review B; 98; 22; 12-2018; 1-120163-1829CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.224504info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.98.224504info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:41Zoai:ri.conicet.gov.ar:11336/100741instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:41.847CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Competition between spin-induced charge instabilities in underdoped cuprates
title Competition between spin-induced charge instabilities in underdoped cuprates
spellingShingle Competition between spin-induced charge instabilities in underdoped cuprates
Zeyher, Roland
cupratos
charge order
title_short Competition between spin-induced charge instabilities in underdoped cuprates
title_full Competition between spin-induced charge instabilities in underdoped cuprates
title_fullStr Competition between spin-induced charge instabilities in underdoped cuprates
title_full_unstemmed Competition between spin-induced charge instabilities in underdoped cuprates
title_sort Competition between spin-induced charge instabilities in underdoped cuprates
dc.creator.none.fl_str_mv Zeyher, Roland
Greco, Andres Francisco
author Zeyher, Roland
author_facet Zeyher, Roland
Greco, Andres Francisco
author_role author
author2 Greco, Andres Francisco
author2_role author
dc.subject.none.fl_str_mv cupratos
charge order
topic cupratos
charge order
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the static charge correlation function in a one-band model on a square lattice. The Hamiltonian consists of effective hoppings of the electrons between the lattice sites and the Heisenberg Hamiltonian. Approximating the irreducible charge correlation function by a single bubble yields the ladder approximation for the charge correlation function. In this approximation, one finds, in general, three charge instabilities - two of them are due to nesting, the third one is the flux phase instability. Since these instabilities cannot explain the experiments in hole-doped cuprates, we have included in the irreducible charge correlation function also Aslamasov-Larkin (AL) diagrams where charge fluctuations interact with products of spin fluctuations. We then find at high temperatures a nematic or d-wave Pomeranchuk instability with a very small momentum. Its transition temperature decreases roughly linearly with doping in the underdoped region and vanishes near optimal doping. Decreasing the temperature further, a secondary axial charge-density wave (CDW) instability appears with mainly d-wave symmetry and a wave vector somewhat larger than the distance between nearest-neighbor hot spots. At still lower temperatures, the diagonal flux phase instability emerges. A closer look shows that the AL diagrams enhance mainly axial and not diagonal charge fluctuations in our one-band model. This is the main reason why axial and not diagonal instabilities are the leading ones in agreement with experiment. The two instabilities due to nesting vanish already at very low temperatures and do not play any major role in the phase diagram. Remarkable is that the nematic and the axial CDW instabilities show a large reentrant behavior.
Fil: Zeyher, Roland. Max Planck Institute For Solid State Research; Alemania
Fil: Greco, Andres Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
description We study the static charge correlation function in a one-band model on a square lattice. The Hamiltonian consists of effective hoppings of the electrons between the lattice sites and the Heisenberg Hamiltonian. Approximating the irreducible charge correlation function by a single bubble yields the ladder approximation for the charge correlation function. In this approximation, one finds, in general, three charge instabilities - two of them are due to nesting, the third one is the flux phase instability. Since these instabilities cannot explain the experiments in hole-doped cuprates, we have included in the irreducible charge correlation function also Aslamasov-Larkin (AL) diagrams where charge fluctuations interact with products of spin fluctuations. We then find at high temperatures a nematic or d-wave Pomeranchuk instability with a very small momentum. Its transition temperature decreases roughly linearly with doping in the underdoped region and vanishes near optimal doping. Decreasing the temperature further, a secondary axial charge-density wave (CDW) instability appears with mainly d-wave symmetry and a wave vector somewhat larger than the distance between nearest-neighbor hot spots. At still lower temperatures, the diagonal flux phase instability emerges. A closer look shows that the AL diagrams enhance mainly axial and not diagonal charge fluctuations in our one-band model. This is the main reason why axial and not diagonal instabilities are the leading ones in agreement with experiment. The two instabilities due to nesting vanish already at very low temperatures and do not play any major role in the phase diagram. Remarkable is that the nematic and the axial CDW instabilities show a large reentrant behavior.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100741
Zeyher, Roland; Greco, Andres Francisco; Competition between spin-induced charge instabilities in underdoped cuprates; American Physical Society; Physical Review B; 98; 22; 12-2018; 1-12
0163-1829
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100741
identifier_str_mv Zeyher, Roland; Greco, Andres Francisco; Competition between spin-induced charge instabilities in underdoped cuprates; American Physical Society; Physical Review B; 98; 22; 12-2018; 1-12
0163-1829
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.224504
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.98.224504
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613939972800512
score 13.070432