Confidence through consensus: A neural mechanism for uncertainty monitoring

Autores
Paz, Luciano; Insabato, Andrea; Zylberberg, Ariel Dario; Deco, Gustavo; Sigman, Mariano
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Models that integrate sensory evidence to a threshold can explain task accuracy, response times and confidence, yet it is still unclear how confidence is encoded in the brain. Classic models assume that confidence is encoded in some form of balance between the evidence integrated in favor and against the selected option. However, recent experiments that measure the sensory evidence's influence on choice and confidence contradict these classic models. We propose that the decision is taken by many loosely coupled modules each of which represent a stochastic sample of the sensory evidence integral. Confidence is then encoded in the dispersion between modules. We show that our proposal can account for the well established relations between confidence, and stimuli discriminability and reaction times, as well as the fluctuations influence on choice and confidence.
Fil: Paz, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Insabato, Andrea. Universitat Pompeu Fabra; España
Fil: Zylberberg, Ariel Dario. Columbia University; Estados Unidos
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España
Fil: Sigman, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Universidad Torcuato Di Tella; Argentina
Materia
Computational neuroscience
Consciousness
Decision
Neural circuits
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/74907

id CONICETDig_d6f9aa8241c5c787c834234d9a963aa9
oai_identifier_str oai:ri.conicet.gov.ar:11336/74907
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Confidence through consensus: A neural mechanism for uncertainty monitoringPaz, LucianoInsabato, AndreaZylberberg, Ariel DarioDeco, GustavoSigman, MarianoComputational neuroscienceConsciousnessDecisionNeural circuitshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Models that integrate sensory evidence to a threshold can explain task accuracy, response times and confidence, yet it is still unclear how confidence is encoded in the brain. Classic models assume that confidence is encoded in some form of balance between the evidence integrated in favor and against the selected option. However, recent experiments that measure the sensory evidence's influence on choice and confidence contradict these classic models. We propose that the decision is taken by many loosely coupled modules each of which represent a stochastic sample of the sensory evidence integral. Confidence is then encoded in the dispersion between modules. We show that our proposal can account for the well established relations between confidence, and stimuli discriminability and reaction times, as well as the fluctuations influence on choice and confidence.Fil: Paz, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Insabato, Andrea. Universitat Pompeu Fabra; EspañaFil: Zylberberg, Ariel Dario. Columbia University; Estados UnidosFil: Deco, Gustavo. Universitat Pompeu Fabra; EspañaFil: Sigman, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Universidad Torcuato Di Tella; ArgentinaNature Publishing Group2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/74907Paz, Luciano; Insabato, Andrea; Zylberberg, Ariel Dario; Deco, Gustavo; Sigman, Mariano; Confidence through consensus: A neural mechanism for uncertainty monitoring; Nature Publishing Group; Scientific Reports; 6; 2-2016; 1-122045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep21830info:eu-repo/semantics/altIdentifier/doi/10.1038/srep21830info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:02:57Zoai:ri.conicet.gov.ar:11336/74907instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:02:58.062CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Confidence through consensus: A neural mechanism for uncertainty monitoring
title Confidence through consensus: A neural mechanism for uncertainty monitoring
spellingShingle Confidence through consensus: A neural mechanism for uncertainty monitoring
Paz, Luciano
Computational neuroscience
Consciousness
Decision
Neural circuits
title_short Confidence through consensus: A neural mechanism for uncertainty monitoring
title_full Confidence through consensus: A neural mechanism for uncertainty monitoring
title_fullStr Confidence through consensus: A neural mechanism for uncertainty monitoring
title_full_unstemmed Confidence through consensus: A neural mechanism for uncertainty monitoring
title_sort Confidence through consensus: A neural mechanism for uncertainty monitoring
dc.creator.none.fl_str_mv Paz, Luciano
Insabato, Andrea
Zylberberg, Ariel Dario
Deco, Gustavo
Sigman, Mariano
author Paz, Luciano
author_facet Paz, Luciano
Insabato, Andrea
Zylberberg, Ariel Dario
Deco, Gustavo
Sigman, Mariano
author_role author
author2 Insabato, Andrea
Zylberberg, Ariel Dario
Deco, Gustavo
Sigman, Mariano
author2_role author
author
author
author
dc.subject.none.fl_str_mv Computational neuroscience
Consciousness
Decision
Neural circuits
topic Computational neuroscience
Consciousness
Decision
Neural circuits
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Models that integrate sensory evidence to a threshold can explain task accuracy, response times and confidence, yet it is still unclear how confidence is encoded in the brain. Classic models assume that confidence is encoded in some form of balance between the evidence integrated in favor and against the selected option. However, recent experiments that measure the sensory evidence's influence on choice and confidence contradict these classic models. We propose that the decision is taken by many loosely coupled modules each of which represent a stochastic sample of the sensory evidence integral. Confidence is then encoded in the dispersion between modules. We show that our proposal can account for the well established relations between confidence, and stimuli discriminability and reaction times, as well as the fluctuations influence on choice and confidence.
Fil: Paz, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Insabato, Andrea. Universitat Pompeu Fabra; España
Fil: Zylberberg, Ariel Dario. Columbia University; Estados Unidos
Fil: Deco, Gustavo. Universitat Pompeu Fabra; España
Fil: Sigman, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Universidad Torcuato Di Tella; Argentina
description Models that integrate sensory evidence to a threshold can explain task accuracy, response times and confidence, yet it is still unclear how confidence is encoded in the brain. Classic models assume that confidence is encoded in some form of balance between the evidence integrated in favor and against the selected option. However, recent experiments that measure the sensory evidence's influence on choice and confidence contradict these classic models. We propose that the decision is taken by many loosely coupled modules each of which represent a stochastic sample of the sensory evidence integral. Confidence is then encoded in the dispersion between modules. We show that our proposal can account for the well established relations between confidence, and stimuli discriminability and reaction times, as well as the fluctuations influence on choice and confidence.
publishDate 2016
dc.date.none.fl_str_mv 2016-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/74907
Paz, Luciano; Insabato, Andrea; Zylberberg, Ariel Dario; Deco, Gustavo; Sigman, Mariano; Confidence through consensus: A neural mechanism for uncertainty monitoring; Nature Publishing Group; Scientific Reports; 6; 2-2016; 1-12
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/74907
identifier_str_mv Paz, Luciano; Insabato, Andrea; Zylberberg, Ariel Dario; Deco, Gustavo; Sigman, Mariano; Confidence through consensus: A neural mechanism for uncertainty monitoring; Nature Publishing Group; Scientific Reports; 6; 2-2016; 1-12
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/srep21830
info:eu-repo/semantics/altIdentifier/doi/10.1038/srep21830
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980051582189568
score 12.993085