Comparación de esquemas de segundo orden basados en diferencias finitas y volúmenes finitos para la solución de la ecuación de Vlasov en el caso no magnetizado

Autores
Lorenzon, Denis; Elaskar, Sergio Amado
Año de publicación
2019
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
La ecuación de Vlasov describe la evolución temporal de la función de distribución de las partículas en un plasma no colisional, y provee una descripción cinética completa del plasma cuando la dinámica de las partículas está gobernada por interacciones electromagnéticas de largo alcance. Si los campos magnéticos auto generados y externos son despreciables, entonces la fuerza de Lorentz se debe sólo al campo eléctrico, el cual puede computarse a partir de la ecuación de Poisson en el caso no relativista. En este artículo, se presentan discretizaciones de segundo orden, basadas en diferencias finitas y en volúmenes finitos, para la resolución del sistema Vlasov-Poisson sobre un espacio de fases bidimensional. La precisión de los esquemas se evalúa y compara a través del problema de pruebas clásico del amortiguamiento de Landau. Además, son examinadas algunas propiedades de conservación importantes del sistema Vlasov-Poisson, como el principio del máximo y la conservación de momentos de la función de distribución.
The Vlasov equation describes the temporal evolution of the distribution function of particles in a collisionless plasma and provides a complete kinetic description of the plasma when the dynamics of the particles is ruled by long range electromagnetic interactions. If the externally applied and self consistent magnetic fields are negligible, the Lorentz force is due to the electric field only, which in the non-relativistic case, is computed from the Poisson equation. In this article, we present finite-difference discretizations and finite-volume conservative discretizations, which are both second order in space, for the solution of the 2-Dimensional Vlasov-Poisson system. The accuracy of the schemes is evaluated and compared through the classical Landau damping benchmark problem. Some important conservation properties of the Vlasov-Poisson system, as the maximum principle and the conservation of moments of the distribution function, are also examined.
Fil: Lorenzon, Denis. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Fil: Elaskar, Sergio Amado. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Materia
Física de plasmas
computacional
Vlasov-Poisson
métodos Eulerianos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/128991

id CONICETDig_d6b7cd609c34469edaf35207a94b7292
oai_identifier_str oai:ri.conicet.gov.ar:11336/128991
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comparación de esquemas de segundo orden basados en diferencias finitas y volúmenes finitos para la solución de la ecuación de Vlasov en el caso no magnetizadoComparison of second order finite-difference and finite-volume based schemes for the solution of the Vlasov equation in the unmagnetized caseLorenzon, DenisElaskar, Sergio AmadoFísica de plasmascomputacionalVlasov-Poissonmétodos Eulerianoshttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2La ecuación de Vlasov describe la evolución temporal de la función de distribución de las partículas en un plasma no colisional, y provee una descripción cinética completa del plasma cuando la dinámica de las partículas está gobernada por interacciones electromagnéticas de largo alcance. Si los campos magnéticos auto generados y externos son despreciables, entonces la fuerza de Lorentz se debe sólo al campo eléctrico, el cual puede computarse a partir de la ecuación de Poisson en el caso no relativista. En este artículo, se presentan discretizaciones de segundo orden, basadas en diferencias finitas y en volúmenes finitos, para la resolución del sistema Vlasov-Poisson sobre un espacio de fases bidimensional. La precisión de los esquemas se evalúa y compara a través del problema de pruebas clásico del amortiguamiento de Landau. Además, son examinadas algunas propiedades de conservación importantes del sistema Vlasov-Poisson, como el principio del máximo y la conservación de momentos de la función de distribución.The Vlasov equation describes the temporal evolution of the distribution function of particles in a collisionless plasma and provides a complete kinetic description of the plasma when the dynamics of the particles is ruled by long range electromagnetic interactions. If the externally applied and self consistent magnetic fields are negligible, the Lorentz force is due to the electric field only, which in the non-relativistic case, is computed from the Poisson equation. In this article, we present finite-difference discretizations and finite-volume conservative discretizations, which are both second order in space, for the solution of the 2-Dimensional Vlasov-Poisson system. The accuracy of the schemes is evaluated and compared through the classical Landau damping benchmark problem. Some important conservation properties of the Vlasov-Poisson system, as the maximum principle and the conservation of moments of the distribution function, are also examined.Fil: Lorenzon, Denis. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaFil: Elaskar, Sergio Amado. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; ArgentinaAsociación Argentina de Mecánica Computacional2019-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/128991Lorenzon, Denis; Elaskar, Sergio Amado; Comparación de esquemas de segundo orden basados en diferencias finitas y volúmenes finitos para la solución de la ecuación de Vlasov en el caso no magnetizado; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; 37; 26; 11-2019; 1103-11172591-3522CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5900info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:00Zoai:ri.conicet.gov.ar:11336/128991instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:01.091CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comparación de esquemas de segundo orden basados en diferencias finitas y volúmenes finitos para la solución de la ecuación de Vlasov en el caso no magnetizado
Comparison of second order finite-difference and finite-volume based schemes for the solution of the Vlasov equation in the unmagnetized case
title Comparación de esquemas de segundo orden basados en diferencias finitas y volúmenes finitos para la solución de la ecuación de Vlasov en el caso no magnetizado
spellingShingle Comparación de esquemas de segundo orden basados en diferencias finitas y volúmenes finitos para la solución de la ecuación de Vlasov en el caso no magnetizado
Lorenzon, Denis
Física de plasmas
computacional
Vlasov-Poisson
métodos Eulerianos
title_short Comparación de esquemas de segundo orden basados en diferencias finitas y volúmenes finitos para la solución de la ecuación de Vlasov en el caso no magnetizado
title_full Comparación de esquemas de segundo orden basados en diferencias finitas y volúmenes finitos para la solución de la ecuación de Vlasov en el caso no magnetizado
title_fullStr Comparación de esquemas de segundo orden basados en diferencias finitas y volúmenes finitos para la solución de la ecuación de Vlasov en el caso no magnetizado
title_full_unstemmed Comparación de esquemas de segundo orden basados en diferencias finitas y volúmenes finitos para la solución de la ecuación de Vlasov en el caso no magnetizado
title_sort Comparación de esquemas de segundo orden basados en diferencias finitas y volúmenes finitos para la solución de la ecuación de Vlasov en el caso no magnetizado
dc.creator.none.fl_str_mv Lorenzon, Denis
Elaskar, Sergio Amado
author Lorenzon, Denis
author_facet Lorenzon, Denis
Elaskar, Sergio Amado
author_role author
author2 Elaskar, Sergio Amado
author2_role author
dc.subject.none.fl_str_mv Física de plasmas
computacional
Vlasov-Poisson
métodos Eulerianos
topic Física de plasmas
computacional
Vlasov-Poisson
métodos Eulerianos
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv La ecuación de Vlasov describe la evolución temporal de la función de distribución de las partículas en un plasma no colisional, y provee una descripción cinética completa del plasma cuando la dinámica de las partículas está gobernada por interacciones electromagnéticas de largo alcance. Si los campos magnéticos auto generados y externos son despreciables, entonces la fuerza de Lorentz se debe sólo al campo eléctrico, el cual puede computarse a partir de la ecuación de Poisson en el caso no relativista. En este artículo, se presentan discretizaciones de segundo orden, basadas en diferencias finitas y en volúmenes finitos, para la resolución del sistema Vlasov-Poisson sobre un espacio de fases bidimensional. La precisión de los esquemas se evalúa y compara a través del problema de pruebas clásico del amortiguamiento de Landau. Además, son examinadas algunas propiedades de conservación importantes del sistema Vlasov-Poisson, como el principio del máximo y la conservación de momentos de la función de distribución.
The Vlasov equation describes the temporal evolution of the distribution function of particles in a collisionless plasma and provides a complete kinetic description of the plasma when the dynamics of the particles is ruled by long range electromagnetic interactions. If the externally applied and self consistent magnetic fields are negligible, the Lorentz force is due to the electric field only, which in the non-relativistic case, is computed from the Poisson equation. In this article, we present finite-difference discretizations and finite-volume conservative discretizations, which are both second order in space, for the solution of the 2-Dimensional Vlasov-Poisson system. The accuracy of the schemes is evaluated and compared through the classical Landau damping benchmark problem. Some important conservation properties of the Vlasov-Poisson system, as the maximum principle and the conservation of moments of the distribution function, are also examined.
Fil: Lorenzon, Denis. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
Fil: Elaskar, Sergio Amado. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina
description La ecuación de Vlasov describe la evolución temporal de la función de distribución de las partículas en un plasma no colisional, y provee una descripción cinética completa del plasma cuando la dinámica de las partículas está gobernada por interacciones electromagnéticas de largo alcance. Si los campos magnéticos auto generados y externos son despreciables, entonces la fuerza de Lorentz se debe sólo al campo eléctrico, el cual puede computarse a partir de la ecuación de Poisson en el caso no relativista. En este artículo, se presentan discretizaciones de segundo orden, basadas en diferencias finitas y en volúmenes finitos, para la resolución del sistema Vlasov-Poisson sobre un espacio de fases bidimensional. La precisión de los esquemas se evalúa y compara a través del problema de pruebas clásico del amortiguamiento de Landau. Además, son examinadas algunas propiedades de conservación importantes del sistema Vlasov-Poisson, como el principio del máximo y la conservación de momentos de la función de distribución.
publishDate 2019
dc.date.none.fl_str_mv 2019-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/128991
Lorenzon, Denis; Elaskar, Sergio Amado; Comparación de esquemas de segundo orden basados en diferencias finitas y volúmenes finitos para la solución de la ecuación de Vlasov en el caso no magnetizado; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; 37; 26; 11-2019; 1103-1117
2591-3522
CONICET Digital
CONICET
url http://hdl.handle.net/11336/128991
identifier_str_mv Lorenzon, Denis; Elaskar, Sergio Amado; Comparación de esquemas de segundo orden basados en diferencias finitas y volúmenes finitos para la solución de la ecuación de Vlasov en el caso no magnetizado; Asociación Argentina de Mecánica Computacional; Mecánica Computacional; 37; 26; 11-2019; 1103-1117
2591-3522
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5900
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
publisher.none.fl_str_mv Asociación Argentina de Mecánica Computacional
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613569706983424
score 13.070432