Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stages

Autores
Nicolao, María Celeste; Cumino, Andrea Carina
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Calcineurin (CaN) is a Ca2+-calmodulin activated serine-threonine protein phosphatase that couples the local or global calcium signals, thus controlling important cellular functions in physiological and developmental processes. The aim of this study was to characterize CaN in Echinococcus granulosus (Eg-CaN), a human cestode parasite of clinical importance, both functionally and molecularly. We found that the catalytic subunit isoforms have predicted sequences of 613 and 557 amino acids and are substantially similar to those of the human counterpart, except for the C-terminal end. We also found that the regulatory subunit consists of 169 amino acids which are 87% identical to the human ortholog. We cloned a cDNA encoding for one of the two catalytic subunit isoforms of CaN (Eg-can-A1) as well as the only copy of the Eg-can-B gene, both constitutively transcribed in all Echinococcus larval stages and responsible for generating a functionally active heterodimer. Eg-CaN native enzyme has phosphatase activity, which is enhanced by Ca2+/Ni2+ and reduced by cyclosporine A and Ca2+ chelators. Participation of Eg-CaN in exocytosis was demonstrated using the FM4-64 probe and Eg-CaN-A was immunolocalized in the cytoplasm of tegumental cells, suckers and excretory bladder of protoscoleces. We also showed that the Eg-can-B transcripts were down-regulated in response to low Ca2+ intracellular level, in agreement with decreased enzyme activity. Confocal microscopy revealed a striking pattern of Eg-CaN-A in discrete fluorescent spots in the protoscolex posterior bladder and vesicularized protoscoleces beginning the vesicular differentiation. In contrast, Eg-CaN-A was undetectable during the pre-microcyst closing stage while a high DDX-like RNA helicase expression was evidenced. Finally, we identified and analyzed the expression of CaN-related endogenous regulators.
Fil: Nicolao, María Celeste. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cumino, Andrea Carina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Calcineurin
Calcium Chelators
Cyclosporine-A
Echinococcus
Larval Development
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/50756

id CONICETDig_d6ace6fef19e188df9dda99e18f92385
oai_identifier_str oai:ri.conicet.gov.ar:11336/50756
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stagesNicolao, María CelesteCumino, Andrea CarinaCalcineurinCalcium ChelatorsCyclosporine-AEchinococcusLarval Developmenthttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Calcineurin (CaN) is a Ca2+-calmodulin activated serine-threonine protein phosphatase that couples the local or global calcium signals, thus controlling important cellular functions in physiological and developmental processes. The aim of this study was to characterize CaN in Echinococcus granulosus (Eg-CaN), a human cestode parasite of clinical importance, both functionally and molecularly. We found that the catalytic subunit isoforms have predicted sequences of 613 and 557 amino acids and are substantially similar to those of the human counterpart, except for the C-terminal end. We also found that the regulatory subunit consists of 169 amino acids which are 87% identical to the human ortholog. We cloned a cDNA encoding for one of the two catalytic subunit isoforms of CaN (Eg-can-A1) as well as the only copy of the Eg-can-B gene, both constitutively transcribed in all Echinococcus larval stages and responsible for generating a functionally active heterodimer. Eg-CaN native enzyme has phosphatase activity, which is enhanced by Ca2+/Ni2+ and reduced by cyclosporine A and Ca2+ chelators. Participation of Eg-CaN in exocytosis was demonstrated using the FM4-64 probe and Eg-CaN-A was immunolocalized in the cytoplasm of tegumental cells, suckers and excretory bladder of protoscoleces. We also showed that the Eg-can-B transcripts were down-regulated in response to low Ca2+ intracellular level, in agreement with decreased enzyme activity. Confocal microscopy revealed a striking pattern of Eg-CaN-A in discrete fluorescent spots in the protoscolex posterior bladder and vesicularized protoscoleces beginning the vesicular differentiation. In contrast, Eg-CaN-A was undetectable during the pre-microcyst closing stage while a high DDX-like RNA helicase expression was evidenced. Finally, we identified and analyzed the expression of CaN-related endogenous regulators.Fil: Nicolao, María Celeste. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cumino, Andrea Carina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50756Nicolao, María Celeste; Cumino, Andrea Carina; Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stages; Elsevier Science; Acta Tropica; 146; 6-2015; 141-1510001-706XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.actatropica.2015.03.016info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001706X15000649info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:28:34Zoai:ri.conicet.gov.ar:11336/50756instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:28:34.862CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stages
title Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stages
spellingShingle Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stages
Nicolao, María Celeste
Calcineurin
Calcium Chelators
Cyclosporine-A
Echinococcus
Larval Development
title_short Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stages
title_full Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stages
title_fullStr Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stages
title_full_unstemmed Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stages
title_sort Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stages
dc.creator.none.fl_str_mv Nicolao, María Celeste
Cumino, Andrea Carina
author Nicolao, María Celeste
author_facet Nicolao, María Celeste
Cumino, Andrea Carina
author_role author
author2 Cumino, Andrea Carina
author2_role author
dc.subject.none.fl_str_mv Calcineurin
Calcium Chelators
Cyclosporine-A
Echinococcus
Larval Development
topic Calcineurin
Calcium Chelators
Cyclosporine-A
Echinococcus
Larval Development
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Calcineurin (CaN) is a Ca2+-calmodulin activated serine-threonine protein phosphatase that couples the local or global calcium signals, thus controlling important cellular functions in physiological and developmental processes. The aim of this study was to characterize CaN in Echinococcus granulosus (Eg-CaN), a human cestode parasite of clinical importance, both functionally and molecularly. We found that the catalytic subunit isoforms have predicted sequences of 613 and 557 amino acids and are substantially similar to those of the human counterpart, except for the C-terminal end. We also found that the regulatory subunit consists of 169 amino acids which are 87% identical to the human ortholog. We cloned a cDNA encoding for one of the two catalytic subunit isoforms of CaN (Eg-can-A1) as well as the only copy of the Eg-can-B gene, both constitutively transcribed in all Echinococcus larval stages and responsible for generating a functionally active heterodimer. Eg-CaN native enzyme has phosphatase activity, which is enhanced by Ca2+/Ni2+ and reduced by cyclosporine A and Ca2+ chelators. Participation of Eg-CaN in exocytosis was demonstrated using the FM4-64 probe and Eg-CaN-A was immunolocalized in the cytoplasm of tegumental cells, suckers and excretory bladder of protoscoleces. We also showed that the Eg-can-B transcripts were down-regulated in response to low Ca2+ intracellular level, in agreement with decreased enzyme activity. Confocal microscopy revealed a striking pattern of Eg-CaN-A in discrete fluorescent spots in the protoscolex posterior bladder and vesicularized protoscoleces beginning the vesicular differentiation. In contrast, Eg-CaN-A was undetectable during the pre-microcyst closing stage while a high DDX-like RNA helicase expression was evidenced. Finally, we identified and analyzed the expression of CaN-related endogenous regulators.
Fil: Nicolao, María Celeste. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cumino, Andrea Carina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Calcineurin (CaN) is a Ca2+-calmodulin activated serine-threonine protein phosphatase that couples the local or global calcium signals, thus controlling important cellular functions in physiological and developmental processes. The aim of this study was to characterize CaN in Echinococcus granulosus (Eg-CaN), a human cestode parasite of clinical importance, both functionally and molecularly. We found that the catalytic subunit isoforms have predicted sequences of 613 and 557 amino acids and are substantially similar to those of the human counterpart, except for the C-terminal end. We also found that the regulatory subunit consists of 169 amino acids which are 87% identical to the human ortholog. We cloned a cDNA encoding for one of the two catalytic subunit isoforms of CaN (Eg-can-A1) as well as the only copy of the Eg-can-B gene, both constitutively transcribed in all Echinococcus larval stages and responsible for generating a functionally active heterodimer. Eg-CaN native enzyme has phosphatase activity, which is enhanced by Ca2+/Ni2+ and reduced by cyclosporine A and Ca2+ chelators. Participation of Eg-CaN in exocytosis was demonstrated using the FM4-64 probe and Eg-CaN-A was immunolocalized in the cytoplasm of tegumental cells, suckers and excretory bladder of protoscoleces. We also showed that the Eg-can-B transcripts were down-regulated in response to low Ca2+ intracellular level, in agreement with decreased enzyme activity. Confocal microscopy revealed a striking pattern of Eg-CaN-A in discrete fluorescent spots in the protoscolex posterior bladder and vesicularized protoscoleces beginning the vesicular differentiation. In contrast, Eg-CaN-A was undetectable during the pre-microcyst closing stage while a high DDX-like RNA helicase expression was evidenced. Finally, we identified and analyzed the expression of CaN-related endogenous regulators.
publishDate 2015
dc.date.none.fl_str_mv 2015-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/50756
Nicolao, María Celeste; Cumino, Andrea Carina; Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stages; Elsevier Science; Acta Tropica; 146; 6-2015; 141-151
0001-706X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/50756
identifier_str_mv Nicolao, María Celeste; Cumino, Andrea Carina; Biochemical and molecular characterization of the calcineurin in Echinococcus granulosus larval stages; Elsevier Science; Acta Tropica; 146; 6-2015; 141-151
0001-706X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actatropica.2015.03.016
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0001706X15000649
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781865225093120
score 12.982451