HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions

Autores
Osterbye, Thomas; Nielsen, Morten; Dudek, Nadine L.; Ramarathinam, Sri H.; Purcell, Anthony W.; Schafer-Nielsen, Claus; Buus, Soren
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The ability to predict and/or identify MHC binding peptides is an essential component of T cell epitope discovery, something that ultimately should benefit the development of vaccines and immunotherapies. In particular, MHC class I prediction tools have matured to a point where accurate selection of optimal peptide epitopes is possible for virtually all MHC class I allotypes; in comparison, current MHC class II (MHC-II) predictors are less mature. Because MHC-II restricted CD4+ T cells control and orchestrated most immune responses, this shortcoming severely hampers the development of effective immunotherapies. The ability to generate large panels of peptides and subsequently large bodies of peptide-MHC-II interaction data are key to the solution of this problem, a solution that also will support the improvement of bioinformatics predictors, which critically relies on the availability of large amounts of accurate, diverse, and representative data. In this study, we have used rHLA-DRB1*01:01 and HLA-DRB1*03:01 molecules to interrogate high-density peptide arrays, in casu containing 70,000 random peptides in triplicates. We demonstrate that the binding data acquired contains systematic and interpretable information reflecting the specificity of the HLA-DR molecules investigated, suitable of training predictors able to predict T cell epitopes and peptides eluted from human EBV-transformed B cells. Collectively, with a cost per peptide reduced to a few cents, combined with the flexibility of rHLA technology, this poses an attractive strategy to generate vast bodies of MHC-II binding data at an unprecedented speed and for the benefit of generating peptide-MHC-II binding data as well as improving MHC-II prediction tools.
Fil: Osterbye, Thomas. Universidad de Copenhagen; Dinamarca
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Dudek, Nadine L.. Monash University; Australia
Fil: Ramarathinam, Sri H.. Monash University; Australia
Fil: Purcell, Anthony W.. Monash University; Australia
Fil: Schafer-Nielsen, Claus. No especifíca;
Fil: Buus, Soren. University Of Copenhagen, Faculty Of Health Sciences;
Materia
MHC class II
Peptide microarray
High throughput
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/112352

id CONICETDig_d64b52e8be84b723c49cb8739c76423f
oai_identifier_str oai:ri.conicet.gov.ar:11336/112352
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling HLA Class II Specificity Assessed by High-Density Peptide Microarray InteractionsOsterbye, ThomasNielsen, MortenDudek, Nadine L.Ramarathinam, Sri H.Purcell, Anthony W.Schafer-Nielsen, ClausBuus, SorenMHC class IIPeptide microarrayHigh throughputhttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3The ability to predict and/or identify MHC binding peptides is an essential component of T cell epitope discovery, something that ultimately should benefit the development of vaccines and immunotherapies. In particular, MHC class I prediction tools have matured to a point where accurate selection of optimal peptide epitopes is possible for virtually all MHC class I allotypes; in comparison, current MHC class II (MHC-II) predictors are less mature. Because MHC-II restricted CD4+ T cells control and orchestrated most immune responses, this shortcoming severely hampers the development of effective immunotherapies. The ability to generate large panels of peptides and subsequently large bodies of peptide-MHC-II interaction data are key to the solution of this problem, a solution that also will support the improvement of bioinformatics predictors, which critically relies on the availability of large amounts of accurate, diverse, and representative data. In this study, we have used rHLA-DRB1*01:01 and HLA-DRB1*03:01 molecules to interrogate high-density peptide arrays, in casu containing 70,000 random peptides in triplicates. We demonstrate that the binding data acquired contains systematic and interpretable information reflecting the specificity of the HLA-DR molecules investigated, suitable of training predictors able to predict T cell epitopes and peptides eluted from human EBV-transformed B cells. Collectively, with a cost per peptide reduced to a few cents, combined with the flexibility of rHLA technology, this poses an attractive strategy to generate vast bodies of MHC-II binding data at an unprecedented speed and for the benefit of generating peptide-MHC-II binding data as well as improving MHC-II prediction tools.Fil: Osterbye, Thomas. Universidad de Copenhagen; DinamarcaFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Dudek, Nadine L.. Monash University; AustraliaFil: Ramarathinam, Sri H.. Monash University; AustraliaFil: Purcell, Anthony W.. Monash University; AustraliaFil: Schafer-Nielsen, Claus. No especifíca;Fil: Buus, Soren. University Of Copenhagen, Faculty Of Health Sciences;American Association of Immunologists2020-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112352Osterbye, Thomas; Nielsen, Morten; Dudek, Nadine L.; Ramarathinam, Sri H.; Purcell, Anthony W.; et al.; HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions; American Association of Immunologists; Journal of Immunology; 205; 1; 6-2020; 290-2990022-1767CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.jimmunol.org/content/205/1/290info:eu-repo/semantics/altIdentifier/doi/10.4049/jimmunol.2000224info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:58Zoai:ri.conicet.gov.ar:11336/112352instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:59.077CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions
title HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions
spellingShingle HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions
Osterbye, Thomas
MHC class II
Peptide microarray
High throughput
title_short HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions
title_full HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions
title_fullStr HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions
title_full_unstemmed HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions
title_sort HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions
dc.creator.none.fl_str_mv Osterbye, Thomas
Nielsen, Morten
Dudek, Nadine L.
Ramarathinam, Sri H.
Purcell, Anthony W.
Schafer-Nielsen, Claus
Buus, Soren
author Osterbye, Thomas
author_facet Osterbye, Thomas
Nielsen, Morten
Dudek, Nadine L.
Ramarathinam, Sri H.
Purcell, Anthony W.
Schafer-Nielsen, Claus
Buus, Soren
author_role author
author2 Nielsen, Morten
Dudek, Nadine L.
Ramarathinam, Sri H.
Purcell, Anthony W.
Schafer-Nielsen, Claus
Buus, Soren
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv MHC class II
Peptide microarray
High throughput
topic MHC class II
Peptide microarray
High throughput
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.3
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv The ability to predict and/or identify MHC binding peptides is an essential component of T cell epitope discovery, something that ultimately should benefit the development of vaccines and immunotherapies. In particular, MHC class I prediction tools have matured to a point where accurate selection of optimal peptide epitopes is possible for virtually all MHC class I allotypes; in comparison, current MHC class II (MHC-II) predictors are less mature. Because MHC-II restricted CD4+ T cells control and orchestrated most immune responses, this shortcoming severely hampers the development of effective immunotherapies. The ability to generate large panels of peptides and subsequently large bodies of peptide-MHC-II interaction data are key to the solution of this problem, a solution that also will support the improvement of bioinformatics predictors, which critically relies on the availability of large amounts of accurate, diverse, and representative data. In this study, we have used rHLA-DRB1*01:01 and HLA-DRB1*03:01 molecules to interrogate high-density peptide arrays, in casu containing 70,000 random peptides in triplicates. We demonstrate that the binding data acquired contains systematic and interpretable information reflecting the specificity of the HLA-DR molecules investigated, suitable of training predictors able to predict T cell epitopes and peptides eluted from human EBV-transformed B cells. Collectively, with a cost per peptide reduced to a few cents, combined with the flexibility of rHLA technology, this poses an attractive strategy to generate vast bodies of MHC-II binding data at an unprecedented speed and for the benefit of generating peptide-MHC-II binding data as well as improving MHC-II prediction tools.
Fil: Osterbye, Thomas. Universidad de Copenhagen; Dinamarca
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Dudek, Nadine L.. Monash University; Australia
Fil: Ramarathinam, Sri H.. Monash University; Australia
Fil: Purcell, Anthony W.. Monash University; Australia
Fil: Schafer-Nielsen, Claus. No especifíca;
Fil: Buus, Soren. University Of Copenhagen, Faculty Of Health Sciences;
description The ability to predict and/or identify MHC binding peptides is an essential component of T cell epitope discovery, something that ultimately should benefit the development of vaccines and immunotherapies. In particular, MHC class I prediction tools have matured to a point where accurate selection of optimal peptide epitopes is possible for virtually all MHC class I allotypes; in comparison, current MHC class II (MHC-II) predictors are less mature. Because MHC-II restricted CD4+ T cells control and orchestrated most immune responses, this shortcoming severely hampers the development of effective immunotherapies. The ability to generate large panels of peptides and subsequently large bodies of peptide-MHC-II interaction data are key to the solution of this problem, a solution that also will support the improvement of bioinformatics predictors, which critically relies on the availability of large amounts of accurate, diverse, and representative data. In this study, we have used rHLA-DRB1*01:01 and HLA-DRB1*03:01 molecules to interrogate high-density peptide arrays, in casu containing 70,000 random peptides in triplicates. We demonstrate that the binding data acquired contains systematic and interpretable information reflecting the specificity of the HLA-DR molecules investigated, suitable of training predictors able to predict T cell epitopes and peptides eluted from human EBV-transformed B cells. Collectively, with a cost per peptide reduced to a few cents, combined with the flexibility of rHLA technology, this poses an attractive strategy to generate vast bodies of MHC-II binding data at an unprecedented speed and for the benefit of generating peptide-MHC-II binding data as well as improving MHC-II prediction tools.
publishDate 2020
dc.date.none.fl_str_mv 2020-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/112352
Osterbye, Thomas; Nielsen, Morten; Dudek, Nadine L.; Ramarathinam, Sri H.; Purcell, Anthony W.; et al.; HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions; American Association of Immunologists; Journal of Immunology; 205; 1; 6-2020; 290-299
0022-1767
CONICET Digital
CONICET
url http://hdl.handle.net/11336/112352
identifier_str_mv Osterbye, Thomas; Nielsen, Morten; Dudek, Nadine L.; Ramarathinam, Sri H.; Purcell, Anthony W.; et al.; HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions; American Association of Immunologists; Journal of Immunology; 205; 1; 6-2020; 290-299
0022-1767
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.jimmunol.org/content/205/1/290
info:eu-repo/semantics/altIdentifier/doi/10.4049/jimmunol.2000224
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Association of Immunologists
publisher.none.fl_str_mv American Association of Immunologists
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269432746868736
score 13.13397