HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions
- Autores
- Osterbye, Thomas; Nielsen, Morten; Dudek, Nadine L.; Ramarathinam, Sri H.; Purcell, Anthony W.; Schafer-Nielsen, Claus; Buus, Soren
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The ability to predict and/or identify MHC binding peptides is an essential component of T cell epitope discovery, something that ultimately should benefit the development of vaccines and immunotherapies. In particular, MHC class I prediction tools have matured to a point where accurate selection of optimal peptide epitopes is possible for virtually all MHC class I allotypes; in comparison, current MHC class II (MHC-II) predictors are less mature. Because MHC-II restricted CD4+ T cells control and orchestrated most immune responses, this shortcoming severely hampers the development of effective immunotherapies. The ability to generate large panels of peptides and subsequently large bodies of peptide-MHC-II interaction data are key to the solution of this problem, a solution that also will support the improvement of bioinformatics predictors, which critically relies on the availability of large amounts of accurate, diverse, and representative data. In this study, we have used rHLA-DRB1*01:01 and HLA-DRB1*03:01 molecules to interrogate high-density peptide arrays, in casu containing 70,000 random peptides in triplicates. We demonstrate that the binding data acquired contains systematic and interpretable information reflecting the specificity of the HLA-DR molecules investigated, suitable of training predictors able to predict T cell epitopes and peptides eluted from human EBV-transformed B cells. Collectively, with a cost per peptide reduced to a few cents, combined with the flexibility of rHLA technology, this poses an attractive strategy to generate vast bodies of MHC-II binding data at an unprecedented speed and for the benefit of generating peptide-MHC-II binding data as well as improving MHC-II prediction tools.
Fil: Osterbye, Thomas. Universidad de Copenhagen; Dinamarca
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Dudek, Nadine L.. Monash University; Australia
Fil: Ramarathinam, Sri H.. Monash University; Australia
Fil: Purcell, Anthony W.. Monash University; Australia
Fil: Schafer-Nielsen, Claus. No especifíca;
Fil: Buus, Soren. University Of Copenhagen, Faculty Of Health Sciences; - Materia
-
MHC class II
Peptide microarray
High throughput - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/112352
Ver los metadatos del registro completo
id |
CONICETDig_d64b52e8be84b723c49cb8739c76423f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/112352 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
HLA Class II Specificity Assessed by High-Density Peptide Microarray InteractionsOsterbye, ThomasNielsen, MortenDudek, Nadine L.Ramarathinam, Sri H.Purcell, Anthony W.Schafer-Nielsen, ClausBuus, SorenMHC class IIPeptide microarrayHigh throughputhttps://purl.org/becyt/ford/3.3https://purl.org/becyt/ford/3The ability to predict and/or identify MHC binding peptides is an essential component of T cell epitope discovery, something that ultimately should benefit the development of vaccines and immunotherapies. In particular, MHC class I prediction tools have matured to a point where accurate selection of optimal peptide epitopes is possible for virtually all MHC class I allotypes; in comparison, current MHC class II (MHC-II) predictors are less mature. Because MHC-II restricted CD4+ T cells control and orchestrated most immune responses, this shortcoming severely hampers the development of effective immunotherapies. The ability to generate large panels of peptides and subsequently large bodies of peptide-MHC-II interaction data are key to the solution of this problem, a solution that also will support the improvement of bioinformatics predictors, which critically relies on the availability of large amounts of accurate, diverse, and representative data. In this study, we have used rHLA-DRB1*01:01 and HLA-DRB1*03:01 molecules to interrogate high-density peptide arrays, in casu containing 70,000 random peptides in triplicates. We demonstrate that the binding data acquired contains systematic and interpretable information reflecting the specificity of the HLA-DR molecules investigated, suitable of training predictors able to predict T cell epitopes and peptides eluted from human EBV-transformed B cells. Collectively, with a cost per peptide reduced to a few cents, combined with the flexibility of rHLA technology, this poses an attractive strategy to generate vast bodies of MHC-II binding data at an unprecedented speed and for the benefit of generating peptide-MHC-II binding data as well as improving MHC-II prediction tools.Fil: Osterbye, Thomas. Universidad de Copenhagen; DinamarcaFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Dudek, Nadine L.. Monash University; AustraliaFil: Ramarathinam, Sri H.. Monash University; AustraliaFil: Purcell, Anthony W.. Monash University; AustraliaFil: Schafer-Nielsen, Claus. No especifíca;Fil: Buus, Soren. University Of Copenhagen, Faculty Of Health Sciences;American Association of Immunologists2020-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112352Osterbye, Thomas; Nielsen, Morten; Dudek, Nadine L.; Ramarathinam, Sri H.; Purcell, Anthony W.; et al.; HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions; American Association of Immunologists; Journal of Immunology; 205; 1; 6-2020; 290-2990022-1767CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.jimmunol.org/content/205/1/290info:eu-repo/semantics/altIdentifier/doi/10.4049/jimmunol.2000224info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:58Zoai:ri.conicet.gov.ar:11336/112352instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:59.077CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions |
title |
HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions |
spellingShingle |
HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions Osterbye, Thomas MHC class II Peptide microarray High throughput |
title_short |
HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions |
title_full |
HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions |
title_fullStr |
HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions |
title_full_unstemmed |
HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions |
title_sort |
HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions |
dc.creator.none.fl_str_mv |
Osterbye, Thomas Nielsen, Morten Dudek, Nadine L. Ramarathinam, Sri H. Purcell, Anthony W. Schafer-Nielsen, Claus Buus, Soren |
author |
Osterbye, Thomas |
author_facet |
Osterbye, Thomas Nielsen, Morten Dudek, Nadine L. Ramarathinam, Sri H. Purcell, Anthony W. Schafer-Nielsen, Claus Buus, Soren |
author_role |
author |
author2 |
Nielsen, Morten Dudek, Nadine L. Ramarathinam, Sri H. Purcell, Anthony W. Schafer-Nielsen, Claus Buus, Soren |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
MHC class II Peptide microarray High throughput |
topic |
MHC class II Peptide microarray High throughput |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.3 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
The ability to predict and/or identify MHC binding peptides is an essential component of T cell epitope discovery, something that ultimately should benefit the development of vaccines and immunotherapies. In particular, MHC class I prediction tools have matured to a point where accurate selection of optimal peptide epitopes is possible for virtually all MHC class I allotypes; in comparison, current MHC class II (MHC-II) predictors are less mature. Because MHC-II restricted CD4+ T cells control and orchestrated most immune responses, this shortcoming severely hampers the development of effective immunotherapies. The ability to generate large panels of peptides and subsequently large bodies of peptide-MHC-II interaction data are key to the solution of this problem, a solution that also will support the improvement of bioinformatics predictors, which critically relies on the availability of large amounts of accurate, diverse, and representative data. In this study, we have used rHLA-DRB1*01:01 and HLA-DRB1*03:01 molecules to interrogate high-density peptide arrays, in casu containing 70,000 random peptides in triplicates. We demonstrate that the binding data acquired contains systematic and interpretable information reflecting the specificity of the HLA-DR molecules investigated, suitable of training predictors able to predict T cell epitopes and peptides eluted from human EBV-transformed B cells. Collectively, with a cost per peptide reduced to a few cents, combined with the flexibility of rHLA technology, this poses an attractive strategy to generate vast bodies of MHC-II binding data at an unprecedented speed and for the benefit of generating peptide-MHC-II binding data as well as improving MHC-II prediction tools. Fil: Osterbye, Thomas. Universidad de Copenhagen; Dinamarca Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Dudek, Nadine L.. Monash University; Australia Fil: Ramarathinam, Sri H.. Monash University; Australia Fil: Purcell, Anthony W.. Monash University; Australia Fil: Schafer-Nielsen, Claus. No especifíca; Fil: Buus, Soren. University Of Copenhagen, Faculty Of Health Sciences; |
description |
The ability to predict and/or identify MHC binding peptides is an essential component of T cell epitope discovery, something that ultimately should benefit the development of vaccines and immunotherapies. In particular, MHC class I prediction tools have matured to a point where accurate selection of optimal peptide epitopes is possible for virtually all MHC class I allotypes; in comparison, current MHC class II (MHC-II) predictors are less mature. Because MHC-II restricted CD4+ T cells control and orchestrated most immune responses, this shortcoming severely hampers the development of effective immunotherapies. The ability to generate large panels of peptides and subsequently large bodies of peptide-MHC-II interaction data are key to the solution of this problem, a solution that also will support the improvement of bioinformatics predictors, which critically relies on the availability of large amounts of accurate, diverse, and representative data. In this study, we have used rHLA-DRB1*01:01 and HLA-DRB1*03:01 molecules to interrogate high-density peptide arrays, in casu containing 70,000 random peptides in triplicates. We demonstrate that the binding data acquired contains systematic and interpretable information reflecting the specificity of the HLA-DR molecules investigated, suitable of training predictors able to predict T cell epitopes and peptides eluted from human EBV-transformed B cells. Collectively, with a cost per peptide reduced to a few cents, combined with the flexibility of rHLA technology, this poses an attractive strategy to generate vast bodies of MHC-II binding data at an unprecedented speed and for the benefit of generating peptide-MHC-II binding data as well as improving MHC-II prediction tools. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/112352 Osterbye, Thomas; Nielsen, Morten; Dudek, Nadine L.; Ramarathinam, Sri H.; Purcell, Anthony W.; et al.; HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions; American Association of Immunologists; Journal of Immunology; 205; 1; 6-2020; 290-299 0022-1767 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/112352 |
identifier_str_mv |
Osterbye, Thomas; Nielsen, Morten; Dudek, Nadine L.; Ramarathinam, Sri H.; Purcell, Anthony W.; et al.; HLA Class II Specificity Assessed by High-Density Peptide Microarray Interactions; American Association of Immunologists; Journal of Immunology; 205; 1; 6-2020; 290-299 0022-1767 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.jimmunol.org/content/205/1/290 info:eu-repo/semantics/altIdentifier/doi/10.4049/jimmunol.2000224 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Association of Immunologists |
publisher.none.fl_str_mv |
American Association of Immunologists |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269432746868736 |
score |
13.13397 |