Unbiased Characterization of Peptide-HLA Class II Interactions Based on Large-Scale Peptide Microarrays; Assessment of the Impact on HLA Class II Ligand and Epitope Prediction
- Autores
- Wendorff, Mareike; García Álvarez, Heli Magalí; Østerbye, Thomas; ElAbd, Hesham; Rosati, Elisa; Degenhardt, Frauke; Buus, Søren; Franke, Andre; Nielsen, Morten
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Human Leukocyte Antigen class II (HLA-II) molecules present peptides to T lymphocytes and play an important role in adaptive immune responses. Characterizing the binding specificity of single HLA-II molecules has profound impacts for understanding cellular immunity, identifying the cause of autoimmune diseases, for immunotherapeutics, and vaccine development. Here, novel high-density peptide microarray technology combined with machine learning techniques were used to address this task at an unprecedented level of high-throughput. Microarrays with over 200,000 defined peptides were assayed with four exemplary HLA-II molecules. Machine learning was applied to mine the signals. The comparison of identified binding motifs, and power for predicting eluted ligands and CD4+ epitope datasets to that obtained using NetMHCIIpan-3.2, confirmed a high quality of the chip readout. These results suggest that the proposed microarray technology offers a novel and unique platform for large-scale unbiased interrogation of peptide binding preferences of HLA-II molecules.
Fil: Wendorff, Mareike. Christian Albrechts Universitat Zu Kiel.; Alemania
Fil: García Álvarez, Heli Magalí. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Østerbye, Thomas. Universidad de Copenhagen; Dinamarca
Fil: ElAbd, Hesham. Christian Albrechts Universitat Zu Kiel.; Alemania
Fil: Rosati, Elisa. Christian Albrechts Universitat Zu Kiel.; Alemania
Fil: Degenhardt, Frauke. Christian Albrechts Universitat Zu Kiel.; Alemania
Fil: Buus, Søren. Universidad de Copenhagen; Dinamarca
Fil: Franke, Andre. Christian Albrechts Universitat Zu Kiel.; Alemania
Fil: Nielsen, Morten. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina - Materia
-
Ultra-high density peptide microarray
MHC class II
Antigen presentation
HLA
Machine learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/267498
Ver los metadatos del registro completo
id |
CONICETDig_409da0998a0cc49828ba4b0c36b24920 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/267498 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Unbiased Characterization of Peptide-HLA Class II Interactions Based on Large-Scale Peptide Microarrays; Assessment of the Impact on HLA Class II Ligand and Epitope PredictionWendorff, MareikeGarcía Álvarez, Heli MagalíØsterbye, ThomasElAbd, HeshamRosati, ElisaDegenhardt, FraukeBuus, SørenFranke, AndreNielsen, MortenUltra-high density peptide microarrayMHC class IIAntigen presentationHLAMachine learninghttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Human Leukocyte Antigen class II (HLA-II) molecules present peptides to T lymphocytes and play an important role in adaptive immune responses. Characterizing the binding specificity of single HLA-II molecules has profound impacts for understanding cellular immunity, identifying the cause of autoimmune diseases, for immunotherapeutics, and vaccine development. Here, novel high-density peptide microarray technology combined with machine learning techniques were used to address this task at an unprecedented level of high-throughput. Microarrays with over 200,000 defined peptides were assayed with four exemplary HLA-II molecules. Machine learning was applied to mine the signals. The comparison of identified binding motifs, and power for predicting eluted ligands and CD4+ epitope datasets to that obtained using NetMHCIIpan-3.2, confirmed a high quality of the chip readout. These results suggest that the proposed microarray technology offers a novel and unique platform for large-scale unbiased interrogation of peptide binding preferences of HLA-II molecules.Fil: Wendorff, Mareike. Christian Albrechts Universitat Zu Kiel.; AlemaniaFil: García Álvarez, Heli Magalí. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Østerbye, Thomas. Universidad de Copenhagen; DinamarcaFil: ElAbd, Hesham. Christian Albrechts Universitat Zu Kiel.; AlemaniaFil: Rosati, Elisa. Christian Albrechts Universitat Zu Kiel.; AlemaniaFil: Degenhardt, Frauke. Christian Albrechts Universitat Zu Kiel.; AlemaniaFil: Buus, Søren. Universidad de Copenhagen; DinamarcaFil: Franke, Andre. Christian Albrechts Universitat Zu Kiel.; AlemaniaFil: Nielsen, Morten. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; ArgentinaFrontiers Media2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/267498Wendorff, Mareike; García Álvarez, Heli Magalí; Østerbye, Thomas; ElAbd, Hesham; Rosati, Elisa; et al.; Unbiased Characterization of Peptide-HLA Class II Interactions Based on Large-Scale Peptide Microarrays; Assessment of the Impact on HLA Class II Ligand and Epitope Prediction; Frontiers Media; Frontiers in Immunology; 11; 8-2020; 1-81664-3224CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fimmu.2020.01705/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/fimmu.2020.01705info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:19Zoai:ri.conicet.gov.ar:11336/267498instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:20.249CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Unbiased Characterization of Peptide-HLA Class II Interactions Based on Large-Scale Peptide Microarrays; Assessment of the Impact on HLA Class II Ligand and Epitope Prediction |
title |
Unbiased Characterization of Peptide-HLA Class II Interactions Based on Large-Scale Peptide Microarrays; Assessment of the Impact on HLA Class II Ligand and Epitope Prediction |
spellingShingle |
Unbiased Characterization of Peptide-HLA Class II Interactions Based on Large-Scale Peptide Microarrays; Assessment of the Impact on HLA Class II Ligand and Epitope Prediction Wendorff, Mareike Ultra-high density peptide microarray MHC class II Antigen presentation HLA Machine learning |
title_short |
Unbiased Characterization of Peptide-HLA Class II Interactions Based on Large-Scale Peptide Microarrays; Assessment of the Impact on HLA Class II Ligand and Epitope Prediction |
title_full |
Unbiased Characterization of Peptide-HLA Class II Interactions Based on Large-Scale Peptide Microarrays; Assessment of the Impact on HLA Class II Ligand and Epitope Prediction |
title_fullStr |
Unbiased Characterization of Peptide-HLA Class II Interactions Based on Large-Scale Peptide Microarrays; Assessment of the Impact on HLA Class II Ligand and Epitope Prediction |
title_full_unstemmed |
Unbiased Characterization of Peptide-HLA Class II Interactions Based on Large-Scale Peptide Microarrays; Assessment of the Impact on HLA Class II Ligand and Epitope Prediction |
title_sort |
Unbiased Characterization of Peptide-HLA Class II Interactions Based on Large-Scale Peptide Microarrays; Assessment of the Impact on HLA Class II Ligand and Epitope Prediction |
dc.creator.none.fl_str_mv |
Wendorff, Mareike García Álvarez, Heli Magalí Østerbye, Thomas ElAbd, Hesham Rosati, Elisa Degenhardt, Frauke Buus, Søren Franke, Andre Nielsen, Morten |
author |
Wendorff, Mareike |
author_facet |
Wendorff, Mareike García Álvarez, Heli Magalí Østerbye, Thomas ElAbd, Hesham Rosati, Elisa Degenhardt, Frauke Buus, Søren Franke, Andre Nielsen, Morten |
author_role |
author |
author2 |
García Álvarez, Heli Magalí Østerbye, Thomas ElAbd, Hesham Rosati, Elisa Degenhardt, Frauke Buus, Søren Franke, Andre Nielsen, Morten |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Ultra-high density peptide microarray MHC class II Antigen presentation HLA Machine learning |
topic |
Ultra-high density peptide microarray MHC class II Antigen presentation HLA Machine learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Human Leukocyte Antigen class II (HLA-II) molecules present peptides to T lymphocytes and play an important role in adaptive immune responses. Characterizing the binding specificity of single HLA-II molecules has profound impacts for understanding cellular immunity, identifying the cause of autoimmune diseases, for immunotherapeutics, and vaccine development. Here, novel high-density peptide microarray technology combined with machine learning techniques were used to address this task at an unprecedented level of high-throughput. Microarrays with over 200,000 defined peptides were assayed with four exemplary HLA-II molecules. Machine learning was applied to mine the signals. The comparison of identified binding motifs, and power for predicting eluted ligands and CD4+ epitope datasets to that obtained using NetMHCIIpan-3.2, confirmed a high quality of the chip readout. These results suggest that the proposed microarray technology offers a novel and unique platform for large-scale unbiased interrogation of peptide binding preferences of HLA-II molecules. Fil: Wendorff, Mareike. Christian Albrechts Universitat Zu Kiel.; Alemania Fil: García Álvarez, Heli Magalí. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Østerbye, Thomas. Universidad de Copenhagen; Dinamarca Fil: ElAbd, Hesham. Christian Albrechts Universitat Zu Kiel.; Alemania Fil: Rosati, Elisa. Christian Albrechts Universitat Zu Kiel.; Alemania Fil: Degenhardt, Frauke. Christian Albrechts Universitat Zu Kiel.; Alemania Fil: Buus, Søren. Universidad de Copenhagen; Dinamarca Fil: Franke, Andre. Christian Albrechts Universitat Zu Kiel.; Alemania Fil: Nielsen, Morten. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina |
description |
Human Leukocyte Antigen class II (HLA-II) molecules present peptides to T lymphocytes and play an important role in adaptive immune responses. Characterizing the binding specificity of single HLA-II molecules has profound impacts for understanding cellular immunity, identifying the cause of autoimmune diseases, for immunotherapeutics, and vaccine development. Here, novel high-density peptide microarray technology combined with machine learning techniques were used to address this task at an unprecedented level of high-throughput. Microarrays with over 200,000 defined peptides were assayed with four exemplary HLA-II molecules. Machine learning was applied to mine the signals. The comparison of identified binding motifs, and power for predicting eluted ligands and CD4+ epitope datasets to that obtained using NetMHCIIpan-3.2, confirmed a high quality of the chip readout. These results suggest that the proposed microarray technology offers a novel and unique platform for large-scale unbiased interrogation of peptide binding preferences of HLA-II molecules. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/267498 Wendorff, Mareike; García Álvarez, Heli Magalí; Østerbye, Thomas; ElAbd, Hesham; Rosati, Elisa; et al.; Unbiased Characterization of Peptide-HLA Class II Interactions Based on Large-Scale Peptide Microarrays; Assessment of the Impact on HLA Class II Ligand and Epitope Prediction; Frontiers Media; Frontiers in Immunology; 11; 8-2020; 1-8 1664-3224 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/267498 |
identifier_str_mv |
Wendorff, Mareike; García Álvarez, Heli Magalí; Østerbye, Thomas; ElAbd, Hesham; Rosati, Elisa; et al.; Unbiased Characterization of Peptide-HLA Class II Interactions Based on Large-Scale Peptide Microarrays; Assessment of the Impact on HLA Class II Ligand and Epitope Prediction; Frontiers Media; Frontiers in Immunology; 11; 8-2020; 1-8 1664-3224 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/article/10.3389/fimmu.2020.01705/full info:eu-repo/semantics/altIdentifier/doi/10.3389/fimmu.2020.01705 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268659626541056 |
score |
13.13397 |