Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid,uricacid,dopamine and nitrite: Application of non-bilinear voltammetric data for exploiting first-ord...
- Autores
- Gholivand, Mohammad Bagher; Jalalvand, Alí R.; Goicoechea, Hector Casimiro; Skov, Thomas
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For the first time, several multivariate calibration (MVC) models including partial least squares-1 (PLS-1), continuum power regression (CPR), multiple linear regression-successive projections algorithm (MLRSPA), robust continuum regression (RCR), partial robust M-regression (PRM), polynomial-PLS (PLY-PLS), spline-PLS (SPL-PLS), radial basis function-PLS (RBF-PLS), least squares-support vector machines (LS-SVM), wavelet transform-artificial neural network (WT-ANN), discrete wavelet transform-ANN (DWT-ANN), and back propagation-ANN (BP-ANN) have been constructed on the basis of non-bilinear first order square wave voltammetric (SWV) data for the simultaneous determination of ascorbic acid (AA), uric acid (UA), dopamine (DP) and nitrite (NT) at a glassy carbon electrode (GCE) to identify which technique offers the best predictions. The compositions of the calibration mixtures were selected according to a simplex lattice design (SLD) and validated with an external set of analytes' mixtures. An asymmetric least squares splines regression (AsLSSR) algorithm was applied for correcting the baselines. A correlation optimized warping (COW) algorithm was used to data alignment and lack of bilinearity was tackled by potential shift correction. The effects of several pre-processing techniques such as genetic algorithm (GA), orthogonal signal correction (OSC), mean centering (MC), robust median centering (RMC), wavelet denoising (WD), and Savitsky–Golay smoothing (SGS) on the predictive ability of the mentioned MVC models were examined. The best preprocessing technique was found for each model. According to the results obtained, the RBF-PLS was recommended to simultaneously assay the concentrations of AA, UA, DP and NT in human serum samples.
Fil: Gholivand, Mohammad Bagher. Razi University. Faculty of Chemistry; Irán
Fil: Jalalvand, Alí R.. Razi University. Faculty of Chemistry; Irán. Universidad Nacional del Litoral. Cátedra de Química Analítica I. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Cátedra de Química Analítica I. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe; Argentina
Fil: Skov, Thomas. University of Copenhagen. Faculty of Life Sciences. Department of Food Science. Quality and Technology group; Dinamarca - Materia
-
Ascorbic Acid
Uric Acid
Dopamine
Nitrite
Simultaneous Determination
Linear And Non-Linear Determination
Calibration Models - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/15435
Ver los metadatos del registro completo
id |
CONICETDig_d607d335511f98f73f4a3b7b81654e23 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/15435 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid,uricacid,dopamine and nitrite: Application of non-bilinear voltammetric data for exploiting first-order advantageGholivand, Mohammad BagherJalalvand, Alí R.Goicoechea, Hector CasimiroSkov, ThomasAscorbic AcidUric AcidDopamineNitriteSimultaneous DeterminationLinear And Non-Linear DeterminationCalibration Modelshttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1For the first time, several multivariate calibration (MVC) models including partial least squares-1 (PLS-1), continuum power regression (CPR), multiple linear regression-successive projections algorithm (MLRSPA), robust continuum regression (RCR), partial robust M-regression (PRM), polynomial-PLS (PLY-PLS), spline-PLS (SPL-PLS), radial basis function-PLS (RBF-PLS), least squares-support vector machines (LS-SVM), wavelet transform-artificial neural network (WT-ANN), discrete wavelet transform-ANN (DWT-ANN), and back propagation-ANN (BP-ANN) have been constructed on the basis of non-bilinear first order square wave voltammetric (SWV) data for the simultaneous determination of ascorbic acid (AA), uric acid (UA), dopamine (DP) and nitrite (NT) at a glassy carbon electrode (GCE) to identify which technique offers the best predictions. The compositions of the calibration mixtures were selected according to a simplex lattice design (SLD) and validated with an external set of analytes' mixtures. An asymmetric least squares splines regression (AsLSSR) algorithm was applied for correcting the baselines. A correlation optimized warping (COW) algorithm was used to data alignment and lack of bilinearity was tackled by potential shift correction. The effects of several pre-processing techniques such as genetic algorithm (GA), orthogonal signal correction (OSC), mean centering (MC), robust median centering (RMC), wavelet denoising (WD), and Savitsky–Golay smoothing (SGS) on the predictive ability of the mentioned MVC models were examined. The best preprocessing technique was found for each model. According to the results obtained, the RBF-PLS was recommended to simultaneously assay the concentrations of AA, UA, DP and NT in human serum samples.Fil: Gholivand, Mohammad Bagher. Razi University. Faculty of Chemistry; IránFil: Jalalvand, Alí R.. Razi University. Faculty of Chemistry; Irán. Universidad Nacional del Litoral. Cátedra de Química Analítica I. Laboratorio de Desarrollo Analítico y Quimiometría; ArgentinaFil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Cátedra de Química Analítica I. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe; ArgentinaFil: Skov, Thomas. University of Copenhagen. Faculty of Life Sciences. Department of Food Science. Quality and Technology group; DinamarcaElsevier Science2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/15435Gholivand, Mohammad Bagher; Jalalvand, Alí R.; Goicoechea, Hector Casimiro; Skov, Thomas; Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid,uricacid,dopamine and nitrite: Application of non-bilinear voltammetric data for exploiting first-order advantage; Elsevier Science; Talanta; 119; 1-2014; 553-5630039-9140enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.talanta.2013.11.028info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0039914013009053info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:48Zoai:ri.conicet.gov.ar:11336/15435instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:48.986CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid,uricacid,dopamine and nitrite: Application of non-bilinear voltammetric data for exploiting first-order advantage |
title |
Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid,uricacid,dopamine and nitrite: Application of non-bilinear voltammetric data for exploiting first-order advantage |
spellingShingle |
Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid,uricacid,dopamine and nitrite: Application of non-bilinear voltammetric data for exploiting first-order advantage Gholivand, Mohammad Bagher Ascorbic Acid Uric Acid Dopamine Nitrite Simultaneous Determination Linear And Non-Linear Determination Calibration Models |
title_short |
Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid,uricacid,dopamine and nitrite: Application of non-bilinear voltammetric data for exploiting first-order advantage |
title_full |
Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid,uricacid,dopamine and nitrite: Application of non-bilinear voltammetric data for exploiting first-order advantage |
title_fullStr |
Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid,uricacid,dopamine and nitrite: Application of non-bilinear voltammetric data for exploiting first-order advantage |
title_full_unstemmed |
Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid,uricacid,dopamine and nitrite: Application of non-bilinear voltammetric data for exploiting first-order advantage |
title_sort |
Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid,uricacid,dopamine and nitrite: Application of non-bilinear voltammetric data for exploiting first-order advantage |
dc.creator.none.fl_str_mv |
Gholivand, Mohammad Bagher Jalalvand, Alí R. Goicoechea, Hector Casimiro Skov, Thomas |
author |
Gholivand, Mohammad Bagher |
author_facet |
Gholivand, Mohammad Bagher Jalalvand, Alí R. Goicoechea, Hector Casimiro Skov, Thomas |
author_role |
author |
author2 |
Jalalvand, Alí R. Goicoechea, Hector Casimiro Skov, Thomas |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ascorbic Acid Uric Acid Dopamine Nitrite Simultaneous Determination Linear And Non-Linear Determination Calibration Models |
topic |
Ascorbic Acid Uric Acid Dopamine Nitrite Simultaneous Determination Linear And Non-Linear Determination Calibration Models |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For the first time, several multivariate calibration (MVC) models including partial least squares-1 (PLS-1), continuum power regression (CPR), multiple linear regression-successive projections algorithm (MLRSPA), robust continuum regression (RCR), partial robust M-regression (PRM), polynomial-PLS (PLY-PLS), spline-PLS (SPL-PLS), radial basis function-PLS (RBF-PLS), least squares-support vector machines (LS-SVM), wavelet transform-artificial neural network (WT-ANN), discrete wavelet transform-ANN (DWT-ANN), and back propagation-ANN (BP-ANN) have been constructed on the basis of non-bilinear first order square wave voltammetric (SWV) data for the simultaneous determination of ascorbic acid (AA), uric acid (UA), dopamine (DP) and nitrite (NT) at a glassy carbon electrode (GCE) to identify which technique offers the best predictions. The compositions of the calibration mixtures were selected according to a simplex lattice design (SLD) and validated with an external set of analytes' mixtures. An asymmetric least squares splines regression (AsLSSR) algorithm was applied for correcting the baselines. A correlation optimized warping (COW) algorithm was used to data alignment and lack of bilinearity was tackled by potential shift correction. The effects of several pre-processing techniques such as genetic algorithm (GA), orthogonal signal correction (OSC), mean centering (MC), robust median centering (RMC), wavelet denoising (WD), and Savitsky–Golay smoothing (SGS) on the predictive ability of the mentioned MVC models were examined. The best preprocessing technique was found for each model. According to the results obtained, the RBF-PLS was recommended to simultaneously assay the concentrations of AA, UA, DP and NT in human serum samples. Fil: Gholivand, Mohammad Bagher. Razi University. Faculty of Chemistry; Irán Fil: Jalalvand, Alí R.. Razi University. Faculty of Chemistry; Irán. Universidad Nacional del Litoral. Cátedra de Química Analítica I. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Cátedra de Química Analítica I. Laboratorio de Desarrollo Analítico y Quimiometría; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe; Argentina Fil: Skov, Thomas. University of Copenhagen. Faculty of Life Sciences. Department of Food Science. Quality and Technology group; Dinamarca |
description |
For the first time, several multivariate calibration (MVC) models including partial least squares-1 (PLS-1), continuum power regression (CPR), multiple linear regression-successive projections algorithm (MLRSPA), robust continuum regression (RCR), partial robust M-regression (PRM), polynomial-PLS (PLY-PLS), spline-PLS (SPL-PLS), radial basis function-PLS (RBF-PLS), least squares-support vector machines (LS-SVM), wavelet transform-artificial neural network (WT-ANN), discrete wavelet transform-ANN (DWT-ANN), and back propagation-ANN (BP-ANN) have been constructed on the basis of non-bilinear first order square wave voltammetric (SWV) data for the simultaneous determination of ascorbic acid (AA), uric acid (UA), dopamine (DP) and nitrite (NT) at a glassy carbon electrode (GCE) to identify which technique offers the best predictions. The compositions of the calibration mixtures were selected according to a simplex lattice design (SLD) and validated with an external set of analytes' mixtures. An asymmetric least squares splines regression (AsLSSR) algorithm was applied for correcting the baselines. A correlation optimized warping (COW) algorithm was used to data alignment and lack of bilinearity was tackled by potential shift correction. The effects of several pre-processing techniques such as genetic algorithm (GA), orthogonal signal correction (OSC), mean centering (MC), robust median centering (RMC), wavelet denoising (WD), and Savitsky–Golay smoothing (SGS) on the predictive ability of the mentioned MVC models were examined. The best preprocessing technique was found for each model. According to the results obtained, the RBF-PLS was recommended to simultaneously assay the concentrations of AA, UA, DP and NT in human serum samples. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/15435 Gholivand, Mohammad Bagher; Jalalvand, Alí R.; Goicoechea, Hector Casimiro; Skov, Thomas; Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid,uricacid,dopamine and nitrite: Application of non-bilinear voltammetric data for exploiting first-order advantage; Elsevier Science; Talanta; 119; 1-2014; 553-563 0039-9140 |
url |
http://hdl.handle.net/11336/15435 |
identifier_str_mv |
Gholivand, Mohammad Bagher; Jalalvand, Alí R.; Goicoechea, Hector Casimiro; Skov, Thomas; Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid,uricacid,dopamine and nitrite: Application of non-bilinear voltammetric data for exploiting first-order advantage; Elsevier Science; Talanta; 119; 1-2014; 553-563 0039-9140 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.talanta.2013.11.028 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0039914013009053 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614305660534784 |
score |
13.070432 |