Contextuality Scenarios Arising from Networks of Stochastic Processes
- Autores
- Iglesias, Rodrigo Alejandro; Tohmé, Fernando Abel; Auday, Marcelo Roberto
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An empirical model is a generalization of a probability space. It consists of a simplicial complex of subsets of a class of random variables such that each simplex has an associated probability distribution. The ensuing marginalizations are coherent, in the sense that the distribution on a face of a simplex coincides with the marginal of the distribution over the entire simplex. An empirical model is called contextual if its distributions cannot be obtained by marginalizing a joint distribution over . Contextual empirical models arise naturally in quantum theory, giving rise to some of its counter -intuitive statistical consequences. In this paper, we present a different and classical source of contextual empirical models: the interaction among many stochastic processes. We attach an empirical model to the ensuing network in which each node represents an open stochastic process with input and output random variables. The statistical behaviour of the network in the long run makes the empirical model generically contextual and even strongly contextual.
Fil: Iglesias, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina
Fil: Auday, Marcelo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur. Departamento de Humanidades; Argentina - Materia
-
Contextuality
Empirical Models
Open Stochastic Processes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60694
Ver los metadatos del registro completo
id |
CONICETDig_d5e520914e5f70b70f841b5b99a6ad07 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60694 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Contextuality Scenarios Arising from Networks of Stochastic ProcessesIglesias, Rodrigo AlejandroTohmé, Fernando AbelAuday, Marcelo RobertoContextualityEmpirical ModelsOpen Stochastic Processeshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1An empirical model is a generalization of a probability space. It consists of a simplicial complex of subsets of a class of random variables such that each simplex has an associated probability distribution. The ensuing marginalizations are coherent, in the sense that the distribution on a face of a simplex coincides with the marginal of the distribution over the entire simplex. An empirical model is called contextual if its distributions cannot be obtained by marginalizing a joint distribution over . Contextual empirical models arise naturally in quantum theory, giving rise to some of its counter -intuitive statistical consequences. In this paper, we present a different and classical source of contextual empirical models: the interaction among many stochastic processes. We attach an empirical model to the ensuing network in which each node represents an open stochastic process with input and output random variables. The statistical behaviour of the network in the long run makes the empirical model generically contextual and even strongly contextual.Fil: Iglesias, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; ArgentinaFil: Auday, Marcelo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur. Departamento de Humanidades; ArgentinaSpringer2016-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60694Iglesias, Rodrigo Alejandro; Tohmé, Fernando Abel; Auday, Marcelo Roberto; Contextuality Scenarios Arising from Networks of Stochastic Processes; Springer; Open Systems & Information Dynamics; 23; 3; 9-2016; 15-291230-1612CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S1230161216500128info:eu-repo/semantics/altIdentifier/doi/10.1142/S1230161216500128info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:06:49Zoai:ri.conicet.gov.ar:11336/60694instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:06:49.98CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Contextuality Scenarios Arising from Networks of Stochastic Processes |
title |
Contextuality Scenarios Arising from Networks of Stochastic Processes |
spellingShingle |
Contextuality Scenarios Arising from Networks of Stochastic Processes Iglesias, Rodrigo Alejandro Contextuality Empirical Models Open Stochastic Processes |
title_short |
Contextuality Scenarios Arising from Networks of Stochastic Processes |
title_full |
Contextuality Scenarios Arising from Networks of Stochastic Processes |
title_fullStr |
Contextuality Scenarios Arising from Networks of Stochastic Processes |
title_full_unstemmed |
Contextuality Scenarios Arising from Networks of Stochastic Processes |
title_sort |
Contextuality Scenarios Arising from Networks of Stochastic Processes |
dc.creator.none.fl_str_mv |
Iglesias, Rodrigo Alejandro Tohmé, Fernando Abel Auday, Marcelo Roberto |
author |
Iglesias, Rodrigo Alejandro |
author_facet |
Iglesias, Rodrigo Alejandro Tohmé, Fernando Abel Auday, Marcelo Roberto |
author_role |
author |
author2 |
Tohmé, Fernando Abel Auday, Marcelo Roberto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Contextuality Empirical Models Open Stochastic Processes |
topic |
Contextuality Empirical Models Open Stochastic Processes |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
An empirical model is a generalization of a probability space. It consists of a simplicial complex of subsets of a class of random variables such that each simplex has an associated probability distribution. The ensuing marginalizations are coherent, in the sense that the distribution on a face of a simplex coincides with the marginal of the distribution over the entire simplex. An empirical model is called contextual if its distributions cannot be obtained by marginalizing a joint distribution over . Contextual empirical models arise naturally in quantum theory, giving rise to some of its counter -intuitive statistical consequences. In this paper, we present a different and classical source of contextual empirical models: the interaction among many stochastic processes. We attach an empirical model to the ensuing network in which each node represents an open stochastic process with input and output random variables. The statistical behaviour of the network in the long run makes the empirical model generically contextual and even strongly contextual. Fil: Iglesias, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina Fil: Auday, Marcelo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur. Departamento de Humanidades; Argentina |
description |
An empirical model is a generalization of a probability space. It consists of a simplicial complex of subsets of a class of random variables such that each simplex has an associated probability distribution. The ensuing marginalizations are coherent, in the sense that the distribution on a face of a simplex coincides with the marginal of the distribution over the entire simplex. An empirical model is called contextual if its distributions cannot be obtained by marginalizing a joint distribution over . Contextual empirical models arise naturally in quantum theory, giving rise to some of its counter -intuitive statistical consequences. In this paper, we present a different and classical source of contextual empirical models: the interaction among many stochastic processes. We attach an empirical model to the ensuing network in which each node represents an open stochastic process with input and output random variables. The statistical behaviour of the network in the long run makes the empirical model generically contextual and even strongly contextual. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60694 Iglesias, Rodrigo Alejandro; Tohmé, Fernando Abel; Auday, Marcelo Roberto; Contextuality Scenarios Arising from Networks of Stochastic Processes; Springer; Open Systems & Information Dynamics; 23; 3; 9-2016; 15-29 1230-1612 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60694 |
identifier_str_mv |
Iglesias, Rodrigo Alejandro; Tohmé, Fernando Abel; Auday, Marcelo Roberto; Contextuality Scenarios Arising from Networks of Stochastic Processes; Springer; Open Systems & Information Dynamics; 23; 3; 9-2016; 15-29 1230-1612 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S1230161216500128 info:eu-repo/semantics/altIdentifier/doi/10.1142/S1230161216500128 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980292871061504 |
score |
12.993085 |