Contextuality Scenarios Arising from Networks of Stochastic Processes

Autores
Iglesias, Rodrigo Alejandro; Tohmé, Fernando Abel; Auday, Marcelo Roberto
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
An empirical model is a generalization of a probability space. It consists of a simplicial complex of subsets of a class of random variables such that each simplex has an associated probability distribution. The ensuing marginalizations are coherent, in the sense that the distribution on a face of a simplex coincides with the marginal of the distribution over the entire simplex. An empirical model is called contextual if its distributions cannot be obtained by marginalizing a joint distribution over . Contextual empirical models arise naturally in quantum theory, giving rise to some of its counter -intuitive statistical consequences. In this paper, we present a different and classical source of contextual empirical models: the interaction among many stochastic processes. We attach an empirical model to the ensuing network in which each node represents an open stochastic process with input and output random variables. The statistical behaviour of the network in the long run makes the empirical model generically contextual and even strongly contextual.
Fil: Iglesias, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina
Fil: Auday, Marcelo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur. Departamento de Humanidades; Argentina
Materia
Contextuality
Empirical Models
Open Stochastic Processes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60694

id CONICETDig_d5e520914e5f70b70f841b5b99a6ad07
oai_identifier_str oai:ri.conicet.gov.ar:11336/60694
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Contextuality Scenarios Arising from Networks of Stochastic ProcessesIglesias, Rodrigo AlejandroTohmé, Fernando AbelAuday, Marcelo RobertoContextualityEmpirical ModelsOpen Stochastic Processeshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1An empirical model is a generalization of a probability space. It consists of a simplicial complex of subsets of a class of random variables such that each simplex has an associated probability distribution. The ensuing marginalizations are coherent, in the sense that the distribution on a face of a simplex coincides with the marginal of the distribution over the entire simplex. An empirical model is called contextual if its distributions cannot be obtained by marginalizing a joint distribution over . Contextual empirical models arise naturally in quantum theory, giving rise to some of its counter -intuitive statistical consequences. In this paper, we present a different and classical source of contextual empirical models: the interaction among many stochastic processes. We attach an empirical model to the ensuing network in which each node represents an open stochastic process with input and output random variables. The statistical behaviour of the network in the long run makes the empirical model generically contextual and even strongly contextual.Fil: Iglesias, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; ArgentinaFil: Auday, Marcelo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur. Departamento de Humanidades; ArgentinaSpringer2016-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60694Iglesias, Rodrigo Alejandro; Tohmé, Fernando Abel; Auday, Marcelo Roberto; Contextuality Scenarios Arising from Networks of Stochastic Processes; Springer; Open Systems & Information Dynamics; 23; 3; 9-2016; 15-291230-1612CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S1230161216500128info:eu-repo/semantics/altIdentifier/doi/10.1142/S1230161216500128info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:06:49Zoai:ri.conicet.gov.ar:11336/60694instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:06:49.98CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Contextuality Scenarios Arising from Networks of Stochastic Processes
title Contextuality Scenarios Arising from Networks of Stochastic Processes
spellingShingle Contextuality Scenarios Arising from Networks of Stochastic Processes
Iglesias, Rodrigo Alejandro
Contextuality
Empirical Models
Open Stochastic Processes
title_short Contextuality Scenarios Arising from Networks of Stochastic Processes
title_full Contextuality Scenarios Arising from Networks of Stochastic Processes
title_fullStr Contextuality Scenarios Arising from Networks of Stochastic Processes
title_full_unstemmed Contextuality Scenarios Arising from Networks of Stochastic Processes
title_sort Contextuality Scenarios Arising from Networks of Stochastic Processes
dc.creator.none.fl_str_mv Iglesias, Rodrigo Alejandro
Tohmé, Fernando Abel
Auday, Marcelo Roberto
author Iglesias, Rodrigo Alejandro
author_facet Iglesias, Rodrigo Alejandro
Tohmé, Fernando Abel
Auday, Marcelo Roberto
author_role author
author2 Tohmé, Fernando Abel
Auday, Marcelo Roberto
author2_role author
author
dc.subject.none.fl_str_mv Contextuality
Empirical Models
Open Stochastic Processes
topic Contextuality
Empirical Models
Open Stochastic Processes
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv An empirical model is a generalization of a probability space. It consists of a simplicial complex of subsets of a class of random variables such that each simplex has an associated probability distribution. The ensuing marginalizations are coherent, in the sense that the distribution on a face of a simplex coincides with the marginal of the distribution over the entire simplex. An empirical model is called contextual if its distributions cannot be obtained by marginalizing a joint distribution over . Contextual empirical models arise naturally in quantum theory, giving rise to some of its counter -intuitive statistical consequences. In this paper, we present a different and classical source of contextual empirical models: the interaction among many stochastic processes. We attach an empirical model to the ensuing network in which each node represents an open stochastic process with input and output random variables. The statistical behaviour of the network in the long run makes the empirical model generically contextual and even strongly contextual.
Fil: Iglesias, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina
Fil: Auday, Marcelo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina. Universidad Nacional del Sur. Departamento de Humanidades; Argentina
description An empirical model is a generalization of a probability space. It consists of a simplicial complex of subsets of a class of random variables such that each simplex has an associated probability distribution. The ensuing marginalizations are coherent, in the sense that the distribution on a face of a simplex coincides with the marginal of the distribution over the entire simplex. An empirical model is called contextual if its distributions cannot be obtained by marginalizing a joint distribution over . Contextual empirical models arise naturally in quantum theory, giving rise to some of its counter -intuitive statistical consequences. In this paper, we present a different and classical source of contextual empirical models: the interaction among many stochastic processes. We attach an empirical model to the ensuing network in which each node represents an open stochastic process with input and output random variables. The statistical behaviour of the network in the long run makes the empirical model generically contextual and even strongly contextual.
publishDate 2016
dc.date.none.fl_str_mv 2016-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60694
Iglesias, Rodrigo Alejandro; Tohmé, Fernando Abel; Auday, Marcelo Roberto; Contextuality Scenarios Arising from Networks of Stochastic Processes; Springer; Open Systems & Information Dynamics; 23; 3; 9-2016; 15-29
1230-1612
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60694
identifier_str_mv Iglesias, Rodrigo Alejandro; Tohmé, Fernando Abel; Auday, Marcelo Roberto; Contextuality Scenarios Arising from Networks of Stochastic Processes; Springer; Open Systems & Information Dynamics; 23; 3; 9-2016; 15-29
1230-1612
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/abs/10.1142/S1230161216500128
info:eu-repo/semantics/altIdentifier/doi/10.1142/S1230161216500128
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980292871061504
score 12.993085