Integrable Degenerate E-Models from 4d Chern–Simons Theory

Autores
Liniado, Joaquin; Vicedo, Benoît
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a general construction of integrable degenerate -models on a 2d manifold using the formalism of Costello and Yamazaki based on 4d Chern–Simons theory on . We begin with a physically motivated review of the mathematical results of Benini et al. (Commun Math Phys 389(3):1417–1443, 2022. https://doi.org/10.1007/s00220-021-04304-7) where a unifying 2d action was obtained from 4d Chern–Simons theory which depends on a pair of 2d fields h and on subject to a constraint and with depending rationally on the complex coordinate on . When the meromorphic 1-form entering the action of 4d Chern–Simons theory is required to have a double pole at infinity, the constraint between h and was solved in Lacroix and Vicedo (SIGMA 17:058, 2021. https://doi.org/10.3842/SIGMA.2021.058) to obtain integrable non-degenerate -models. We extend the latter approach to the most general setting of an arbitrary 1-form and obtain integrable degenerate -models. To illustrate the procedure, we reproduce two well-known examples of integrable degenerate -models: the pseudo-dual of the principal chiral model and the bi-Yang-Baxter -model.
Fil: Liniado, Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Vicedo, Benoît. University of York; Reino Unido
Materia
4d Chern Simons
Integrability
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/253706

id CONICETDig_2be2bc0887fe32c27abee815c1f5aaa5
oai_identifier_str oai:ri.conicet.gov.ar:11336/253706
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Integrable Degenerate E-Models from 4d Chern–Simons TheoryLiniado, JoaquinVicedo, Benoît4d Chern SimonsIntegrabilityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a general construction of integrable degenerate -models on a 2d manifold using the formalism of Costello and Yamazaki based on 4d Chern–Simons theory on . We begin with a physically motivated review of the mathematical results of Benini et al. (Commun Math Phys 389(3):1417–1443, 2022. https://doi.org/10.1007/s00220-021-04304-7) where a unifying 2d action was obtained from 4d Chern–Simons theory which depends on a pair of 2d fields h and on subject to a constraint and with depending rationally on the complex coordinate on . When the meromorphic 1-form entering the action of 4d Chern–Simons theory is required to have a double pole at infinity, the constraint between h and was solved in Lacroix and Vicedo (SIGMA 17:058, 2021. https://doi.org/10.3842/SIGMA.2021.058) to obtain integrable non-degenerate -models. We extend the latter approach to the most general setting of an arbitrary 1-form and obtain integrable degenerate -models. To illustrate the procedure, we reproduce two well-known examples of integrable degenerate -models: the pseudo-dual of the principal chiral model and the bi-Yang-Baxter -model.Fil: Liniado, Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Vicedo, Benoît. University of York; Reino UnidoBirkhauser Verlag Ag2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/253706Liniado, Joaquin; Vicedo, Benoît; Integrable Degenerate E-Models from 4d Chern–Simons Theory; Birkhauser Verlag Ag; Annales Henri Poincare; 24; 10; 4-2023; 3421-34591424-0637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00023-023-01317-xinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00023-023-01317-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:54Zoai:ri.conicet.gov.ar:11336/253706instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:54.715CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Integrable Degenerate E-Models from 4d Chern–Simons Theory
title Integrable Degenerate E-Models from 4d Chern–Simons Theory
spellingShingle Integrable Degenerate E-Models from 4d Chern–Simons Theory
Liniado, Joaquin
4d Chern Simons
Integrability
title_short Integrable Degenerate E-Models from 4d Chern–Simons Theory
title_full Integrable Degenerate E-Models from 4d Chern–Simons Theory
title_fullStr Integrable Degenerate E-Models from 4d Chern–Simons Theory
title_full_unstemmed Integrable Degenerate E-Models from 4d Chern–Simons Theory
title_sort Integrable Degenerate E-Models from 4d Chern–Simons Theory
dc.creator.none.fl_str_mv Liniado, Joaquin
Vicedo, Benoît
author Liniado, Joaquin
author_facet Liniado, Joaquin
Vicedo, Benoît
author_role author
author2 Vicedo, Benoît
author2_role author
dc.subject.none.fl_str_mv 4d Chern Simons
Integrability
topic 4d Chern Simons
Integrability
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a general construction of integrable degenerate -models on a 2d manifold using the formalism of Costello and Yamazaki based on 4d Chern–Simons theory on . We begin with a physically motivated review of the mathematical results of Benini et al. (Commun Math Phys 389(3):1417–1443, 2022. https://doi.org/10.1007/s00220-021-04304-7) where a unifying 2d action was obtained from 4d Chern–Simons theory which depends on a pair of 2d fields h and on subject to a constraint and with depending rationally on the complex coordinate on . When the meromorphic 1-form entering the action of 4d Chern–Simons theory is required to have a double pole at infinity, the constraint between h and was solved in Lacroix and Vicedo (SIGMA 17:058, 2021. https://doi.org/10.3842/SIGMA.2021.058) to obtain integrable non-degenerate -models. We extend the latter approach to the most general setting of an arbitrary 1-form and obtain integrable degenerate -models. To illustrate the procedure, we reproduce two well-known examples of integrable degenerate -models: the pseudo-dual of the principal chiral model and the bi-Yang-Baxter -model.
Fil: Liniado, Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Vicedo, Benoît. University of York; Reino Unido
description We present a general construction of integrable degenerate -models on a 2d manifold using the formalism of Costello and Yamazaki based on 4d Chern–Simons theory on . We begin with a physically motivated review of the mathematical results of Benini et al. (Commun Math Phys 389(3):1417–1443, 2022. https://doi.org/10.1007/s00220-021-04304-7) where a unifying 2d action was obtained from 4d Chern–Simons theory which depends on a pair of 2d fields h and on subject to a constraint and with depending rationally on the complex coordinate on . When the meromorphic 1-form entering the action of 4d Chern–Simons theory is required to have a double pole at infinity, the constraint between h and was solved in Lacroix and Vicedo (SIGMA 17:058, 2021. https://doi.org/10.3842/SIGMA.2021.058) to obtain integrable non-degenerate -models. We extend the latter approach to the most general setting of an arbitrary 1-form and obtain integrable degenerate -models. To illustrate the procedure, we reproduce two well-known examples of integrable degenerate -models: the pseudo-dual of the principal chiral model and the bi-Yang-Baxter -model.
publishDate 2023
dc.date.none.fl_str_mv 2023-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/253706
Liniado, Joaquin; Vicedo, Benoît; Integrable Degenerate E-Models from 4d Chern–Simons Theory; Birkhauser Verlag Ag; Annales Henri Poincare; 24; 10; 4-2023; 3421-3459
1424-0637
CONICET Digital
CONICET
url http://hdl.handle.net/11336/253706
identifier_str_mv Liniado, Joaquin; Vicedo, Benoît; Integrable Degenerate E-Models from 4d Chern–Simons Theory; Birkhauser Verlag Ag; Annales Henri Poincare; 24; 10; 4-2023; 3421-3459
1424-0637
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00023-023-01317-x
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00023-023-01317-x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613262553907200
score 13.070432