Integrable Degenerate E-Models from 4d Chern–Simons Theory
- Autores
- Liniado, Joaquin; Vicedo, Benoît
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a general construction of integrable degenerate -models on a 2d manifold using the formalism of Costello and Yamazaki based on 4d Chern–Simons theory on . We begin with a physically motivated review of the mathematical results of Benini et al. (Commun Math Phys 389(3):1417–1443, 2022. https://doi.org/10.1007/s00220-021-04304-7) where a unifying 2d action was obtained from 4d Chern–Simons theory which depends on a pair of 2d fields h and on subject to a constraint and with depending rationally on the complex coordinate on . When the meromorphic 1-form entering the action of 4d Chern–Simons theory is required to have a double pole at infinity, the constraint between h and was solved in Lacroix and Vicedo (SIGMA 17:058, 2021. https://doi.org/10.3842/SIGMA.2021.058) to obtain integrable non-degenerate -models. We extend the latter approach to the most general setting of an arbitrary 1-form and obtain integrable degenerate -models. To illustrate the procedure, we reproduce two well-known examples of integrable degenerate -models: the pseudo-dual of the principal chiral model and the bi-Yang-Baxter -model.
Fil: Liniado, Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Vicedo, Benoît. University of York; Reino Unido - Materia
-
4d Chern Simons
Integrability - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/253706
Ver los metadatos del registro completo
| id |
CONICETDig_2be2bc0887fe32c27abee815c1f5aaa5 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/253706 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Integrable Degenerate E-Models from 4d Chern–Simons TheoryLiniado, JoaquinVicedo, Benoît4d Chern SimonsIntegrabilityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present a general construction of integrable degenerate -models on a 2d manifold using the formalism of Costello and Yamazaki based on 4d Chern–Simons theory on . We begin with a physically motivated review of the mathematical results of Benini et al. (Commun Math Phys 389(3):1417–1443, 2022. https://doi.org/10.1007/s00220-021-04304-7) where a unifying 2d action was obtained from 4d Chern–Simons theory which depends on a pair of 2d fields h and on subject to a constraint and with depending rationally on the complex coordinate on . When the meromorphic 1-form entering the action of 4d Chern–Simons theory is required to have a double pole at infinity, the constraint between h and was solved in Lacroix and Vicedo (SIGMA 17:058, 2021. https://doi.org/10.3842/SIGMA.2021.058) to obtain integrable non-degenerate -models. We extend the latter approach to the most general setting of an arbitrary 1-form and obtain integrable degenerate -models. To illustrate the procedure, we reproduce two well-known examples of integrable degenerate -models: the pseudo-dual of the principal chiral model and the bi-Yang-Baxter -model.Fil: Liniado, Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Vicedo, Benoît. University of York; Reino UnidoBirkhauser Verlag Ag2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/253706Liniado, Joaquin; Vicedo, Benoît; Integrable Degenerate E-Models from 4d Chern–Simons Theory; Birkhauser Verlag Ag; Annales Henri Poincare; 24; 10; 4-2023; 3421-34591424-0637CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00023-023-01317-xinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00023-023-01317-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:36:52Zoai:ri.conicet.gov.ar:11336/253706instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:36:52.936CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Integrable Degenerate E-Models from 4d Chern–Simons Theory |
| title |
Integrable Degenerate E-Models from 4d Chern–Simons Theory |
| spellingShingle |
Integrable Degenerate E-Models from 4d Chern–Simons Theory Liniado, Joaquin 4d Chern Simons Integrability |
| title_short |
Integrable Degenerate E-Models from 4d Chern–Simons Theory |
| title_full |
Integrable Degenerate E-Models from 4d Chern–Simons Theory |
| title_fullStr |
Integrable Degenerate E-Models from 4d Chern–Simons Theory |
| title_full_unstemmed |
Integrable Degenerate E-Models from 4d Chern–Simons Theory |
| title_sort |
Integrable Degenerate E-Models from 4d Chern–Simons Theory |
| dc.creator.none.fl_str_mv |
Liniado, Joaquin Vicedo, Benoît |
| author |
Liniado, Joaquin |
| author_facet |
Liniado, Joaquin Vicedo, Benoît |
| author_role |
author |
| author2 |
Vicedo, Benoît |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
4d Chern Simons Integrability |
| topic |
4d Chern Simons Integrability |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We present a general construction of integrable degenerate -models on a 2d manifold using the formalism of Costello and Yamazaki based on 4d Chern–Simons theory on . We begin with a physically motivated review of the mathematical results of Benini et al. (Commun Math Phys 389(3):1417–1443, 2022. https://doi.org/10.1007/s00220-021-04304-7) where a unifying 2d action was obtained from 4d Chern–Simons theory which depends on a pair of 2d fields h and on subject to a constraint and with depending rationally on the complex coordinate on . When the meromorphic 1-form entering the action of 4d Chern–Simons theory is required to have a double pole at infinity, the constraint between h and was solved in Lacroix and Vicedo (SIGMA 17:058, 2021. https://doi.org/10.3842/SIGMA.2021.058) to obtain integrable non-degenerate -models. We extend the latter approach to the most general setting of an arbitrary 1-form and obtain integrable degenerate -models. To illustrate the procedure, we reproduce two well-known examples of integrable degenerate -models: the pseudo-dual of the principal chiral model and the bi-Yang-Baxter -model. Fil: Liniado, Joaquin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Vicedo, Benoît. University of York; Reino Unido |
| description |
We present a general construction of integrable degenerate -models on a 2d manifold using the formalism of Costello and Yamazaki based on 4d Chern–Simons theory on . We begin with a physically motivated review of the mathematical results of Benini et al. (Commun Math Phys 389(3):1417–1443, 2022. https://doi.org/10.1007/s00220-021-04304-7) where a unifying 2d action was obtained from 4d Chern–Simons theory which depends on a pair of 2d fields h and on subject to a constraint and with depending rationally on the complex coordinate on . When the meromorphic 1-form entering the action of 4d Chern–Simons theory is required to have a double pole at infinity, the constraint between h and was solved in Lacroix and Vicedo (SIGMA 17:058, 2021. https://doi.org/10.3842/SIGMA.2021.058) to obtain integrable non-degenerate -models. We extend the latter approach to the most general setting of an arbitrary 1-form and obtain integrable degenerate -models. To illustrate the procedure, we reproduce two well-known examples of integrable degenerate -models: the pseudo-dual of the principal chiral model and the bi-Yang-Baxter -model. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/253706 Liniado, Joaquin; Vicedo, Benoît; Integrable Degenerate E-Models from 4d Chern–Simons Theory; Birkhauser Verlag Ag; Annales Henri Poincare; 24; 10; 4-2023; 3421-3459 1424-0637 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/253706 |
| identifier_str_mv |
Liniado, Joaquin; Vicedo, Benoît; Integrable Degenerate E-Models from 4d Chern–Simons Theory; Birkhauser Verlag Ag; Annales Henri Poincare; 24; 10; 4-2023; 3421-3459 1424-0637 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00023-023-01317-x info:eu-repo/semantics/altIdentifier/doi/10.1007/s00023-023-01317-x |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
| publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597274416906240 |
| score |
13.24909 |