Doping of nanocrystalline SnO2 for high sensitivity resistivity sensors to detect H2S (g) in air

Autores
Poiasina, Mariana Paola; Bianchetti, Mario Fidel; Heredia, Eduardo Armando; Canepa, Horacio Ricardo; Walsöe de Reca, Noemi E.
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work, several factors to increase the sensitivity of a high precision resistive type sensor able todetect from (10 to 15) ppm de H2S (g) in air, are considered. It is accepted that the doping of the material sensor (SnO2) increases the dispositive sensibility. Several dopants were proved, concluding that the CuO was the most convenient. Several papers are found in the bibliography presenting different techniques to dope the material sensor but, in this work, an own developed at DEINSO technique was employed, in which the dopant is homogeneously distributed in the SnO2 crystalline lattice. At first, it was proposed to dope the nanocrystalline SnO2 with different CuO concentrations (1 %wt. 5 %wt. and 6 %wt.) to choose the most convenient one, which resulted 5 % wt. CuO. Under these conditions, a more sensible sensor was built and other factors were studied to increase even more the sensitivity. The 5 %wt CuO-SnO2 was deposited on thin films (or layers) forming a multilayers system (which employed from three to six layers or superimposed thin films). The sensor material was characterized with different techniques, such as: DRX, SEM-EDS and GISAXS, which enabled to determinethe mean crystallite size, the multilayer system thickness, the crystallinity, the chemical composition and the layers porosity. With the built sensor, (10 to 15) ppm of H2S (g) in air concentration was measured at an operation temperature (To) of 140 ºC. This finding enabled to solve the request of an ambiance security sensor for the oil cracking plant of an important Argentine oil company.The following subject is not included in this paper but, it is interesting to inform that higher sensitivity of the same described sensor it was possible to detect concentrations from (4 - 5) ppm of H2S (g) in air at To=~ 30 ºC, which makes possible to build a medical use sensor to detect H2S (g) very low concentrations (minor than 5ppm) which are found in halitosis of hepatic maladies.
Fil: Poiasina, Mariana Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
Fil: Bianchetti, Mario Fidel. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Heredia, Eduardo Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Canepa, Horacio Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Walsöe de Reca, Noemi E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Materia
HIGH SENSITIVITY SENSOR TO DETECT SULPHIDE GAS
NANOCRYSTALLINE SnO2
CuO DOPED SnO2
THIN FILMS MULTILAYERED SYSTEM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/216683

id CONICETDig_d3c746ced4b33f3d2a6a9b001db41730
oai_identifier_str oai:ri.conicet.gov.ar:11336/216683
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Doping of nanocrystalline SnO2 for high sensitivity resistivity sensors to detect H2S (g) in airPoiasina, Mariana PaolaBianchetti, Mario FidelHeredia, Eduardo ArmandoCanepa, Horacio RicardoWalsöe de Reca, Noemi E.HIGH SENSITIVITY SENSOR TO DETECT SULPHIDE GASNANOCRYSTALLINE SnO2CuO DOPED SnO2THIN FILMS MULTILAYERED SYSTEMhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2In this work, several factors to increase the sensitivity of a high precision resistive type sensor able todetect from (10 to 15) ppm de H2S (g) in air, are considered. It is accepted that the doping of the material sensor (SnO2) increases the dispositive sensibility. Several dopants were proved, concluding that the CuO was the most convenient. Several papers are found in the bibliography presenting different techniques to dope the material sensor but, in this work, an own developed at DEINSO technique was employed, in which the dopant is homogeneously distributed in the SnO2 crystalline lattice. At first, it was proposed to dope the nanocrystalline SnO2 with different CuO concentrations (1 %wt. 5 %wt. and 6 %wt.) to choose the most convenient one, which resulted 5 % wt. CuO. Under these conditions, a more sensible sensor was built and other factors were studied to increase even more the sensitivity. The 5 %wt CuO-SnO2 was deposited on thin films (or layers) forming a multilayers system (which employed from three to six layers or superimposed thin films). The sensor material was characterized with different techniques, such as: DRX, SEM-EDS and GISAXS, which enabled to determinethe mean crystallite size, the multilayer system thickness, the crystallinity, the chemical composition and the layers porosity. With the built sensor, (10 to 15) ppm of H2S (g) in air concentration was measured at an operation temperature (To) of 140 ºC. This finding enabled to solve the request of an ambiance security sensor for the oil cracking plant of an important Argentine oil company.The following subject is not included in this paper but, it is interesting to inform that higher sensitivity of the same described sensor it was possible to detect concentrations from (4 - 5) ppm of H2S (g) in air at To=~ 30 ºC, which makes possible to build a medical use sensor to detect H2S (g) very low concentrations (minor than 5ppm) which are found in halitosis of hepatic maladies.Fil: Poiasina, Mariana Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaFil: Bianchetti, Mario Fidel. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; ArgentinaFil: Heredia, Eduardo Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; ArgentinaFil: Canepa, Horacio Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; ArgentinaFil: Walsöe de Reca, Noemi E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; ArgentinaInternational Frequency Sensor Association2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/216683Poiasina, Mariana Paola; Bianchetti, Mario Fidel; Heredia, Eduardo Armando; Canepa, Horacio Ricardo; Walsöe de Reca, Noemi E.; Doping of nanocrystalline SnO2 for high sensitivity resistivity sensors to detect H2S (g) in air; International Frequency Sensor Association; Sensors & Transducers; 257; 3; 5-2022; 20-292306-85151726-5479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sensorsportal.com/HTML/DIGEST/P_3265.htminfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:23Zoai:ri.conicet.gov.ar:11336/216683instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:23.763CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Doping of nanocrystalline SnO2 for high sensitivity resistivity sensors to detect H2S (g) in air
title Doping of nanocrystalline SnO2 for high sensitivity resistivity sensors to detect H2S (g) in air
spellingShingle Doping of nanocrystalline SnO2 for high sensitivity resistivity sensors to detect H2S (g) in air
Poiasina, Mariana Paola
HIGH SENSITIVITY SENSOR TO DETECT SULPHIDE GAS
NANOCRYSTALLINE SnO2
CuO DOPED SnO2
THIN FILMS MULTILAYERED SYSTEM
title_short Doping of nanocrystalline SnO2 for high sensitivity resistivity sensors to detect H2S (g) in air
title_full Doping of nanocrystalline SnO2 for high sensitivity resistivity sensors to detect H2S (g) in air
title_fullStr Doping of nanocrystalline SnO2 for high sensitivity resistivity sensors to detect H2S (g) in air
title_full_unstemmed Doping of nanocrystalline SnO2 for high sensitivity resistivity sensors to detect H2S (g) in air
title_sort Doping of nanocrystalline SnO2 for high sensitivity resistivity sensors to detect H2S (g) in air
dc.creator.none.fl_str_mv Poiasina, Mariana Paola
Bianchetti, Mario Fidel
Heredia, Eduardo Armando
Canepa, Horacio Ricardo
Walsöe de Reca, Noemi E.
author Poiasina, Mariana Paola
author_facet Poiasina, Mariana Paola
Bianchetti, Mario Fidel
Heredia, Eduardo Armando
Canepa, Horacio Ricardo
Walsöe de Reca, Noemi E.
author_role author
author2 Bianchetti, Mario Fidel
Heredia, Eduardo Armando
Canepa, Horacio Ricardo
Walsöe de Reca, Noemi E.
author2_role author
author
author
author
dc.subject.none.fl_str_mv HIGH SENSITIVITY SENSOR TO DETECT SULPHIDE GAS
NANOCRYSTALLINE SnO2
CuO DOPED SnO2
THIN FILMS MULTILAYERED SYSTEM
topic HIGH SENSITIVITY SENSOR TO DETECT SULPHIDE GAS
NANOCRYSTALLINE SnO2
CuO DOPED SnO2
THIN FILMS MULTILAYERED SYSTEM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this work, several factors to increase the sensitivity of a high precision resistive type sensor able todetect from (10 to 15) ppm de H2S (g) in air, are considered. It is accepted that the doping of the material sensor (SnO2) increases the dispositive sensibility. Several dopants were proved, concluding that the CuO was the most convenient. Several papers are found in the bibliography presenting different techniques to dope the material sensor but, in this work, an own developed at DEINSO technique was employed, in which the dopant is homogeneously distributed in the SnO2 crystalline lattice. At first, it was proposed to dope the nanocrystalline SnO2 with different CuO concentrations (1 %wt. 5 %wt. and 6 %wt.) to choose the most convenient one, which resulted 5 % wt. CuO. Under these conditions, a more sensible sensor was built and other factors were studied to increase even more the sensitivity. The 5 %wt CuO-SnO2 was deposited on thin films (or layers) forming a multilayers system (which employed from three to six layers or superimposed thin films). The sensor material was characterized with different techniques, such as: DRX, SEM-EDS and GISAXS, which enabled to determinethe mean crystallite size, the multilayer system thickness, the crystallinity, the chemical composition and the layers porosity. With the built sensor, (10 to 15) ppm of H2S (g) in air concentration was measured at an operation temperature (To) of 140 ºC. This finding enabled to solve the request of an ambiance security sensor for the oil cracking plant of an important Argentine oil company.The following subject is not included in this paper but, it is interesting to inform that higher sensitivity of the same described sensor it was possible to detect concentrations from (4 - 5) ppm of H2S (g) in air at To=~ 30 ºC, which makes possible to build a medical use sensor to detect H2S (g) very low concentrations (minor than 5ppm) which are found in halitosis of hepatic maladies.
Fil: Poiasina, Mariana Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
Fil: Bianchetti, Mario Fidel. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Heredia, Eduardo Armando. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Canepa, Horacio Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
Fil: Walsöe de Reca, Noemi E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina
description In this work, several factors to increase the sensitivity of a high precision resistive type sensor able todetect from (10 to 15) ppm de H2S (g) in air, are considered. It is accepted that the doping of the material sensor (SnO2) increases the dispositive sensibility. Several dopants were proved, concluding that the CuO was the most convenient. Several papers are found in the bibliography presenting different techniques to dope the material sensor but, in this work, an own developed at DEINSO technique was employed, in which the dopant is homogeneously distributed in the SnO2 crystalline lattice. At first, it was proposed to dope the nanocrystalline SnO2 with different CuO concentrations (1 %wt. 5 %wt. and 6 %wt.) to choose the most convenient one, which resulted 5 % wt. CuO. Under these conditions, a more sensible sensor was built and other factors were studied to increase even more the sensitivity. The 5 %wt CuO-SnO2 was deposited on thin films (or layers) forming a multilayers system (which employed from three to six layers or superimposed thin films). The sensor material was characterized with different techniques, such as: DRX, SEM-EDS and GISAXS, which enabled to determinethe mean crystallite size, the multilayer system thickness, the crystallinity, the chemical composition and the layers porosity. With the built sensor, (10 to 15) ppm of H2S (g) in air concentration was measured at an operation temperature (To) of 140 ºC. This finding enabled to solve the request of an ambiance security sensor for the oil cracking plant of an important Argentine oil company.The following subject is not included in this paper but, it is interesting to inform that higher sensitivity of the same described sensor it was possible to detect concentrations from (4 - 5) ppm of H2S (g) in air at To=~ 30 ºC, which makes possible to build a medical use sensor to detect H2S (g) very low concentrations (minor than 5ppm) which are found in halitosis of hepatic maladies.
publishDate 2022
dc.date.none.fl_str_mv 2022-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/216683
Poiasina, Mariana Paola; Bianchetti, Mario Fidel; Heredia, Eduardo Armando; Canepa, Horacio Ricardo; Walsöe de Reca, Noemi E.; Doping of nanocrystalline SnO2 for high sensitivity resistivity sensors to detect H2S (g) in air; International Frequency Sensor Association; Sensors & Transducers; 257; 3; 5-2022; 20-29
2306-8515
1726-5479
CONICET Digital
CONICET
url http://hdl.handle.net/11336/216683
identifier_str_mv Poiasina, Mariana Paola; Bianchetti, Mario Fidel; Heredia, Eduardo Armando; Canepa, Horacio Ricardo; Walsöe de Reca, Noemi E.; Doping of nanocrystalline SnO2 for high sensitivity resistivity sensors to detect H2S (g) in air; International Frequency Sensor Association; Sensors & Transducers; 257; 3; 5-2022; 20-29
2306-8515
1726-5479
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sensorsportal.com/HTML/DIGEST/P_3265.htm
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv International Frequency Sensor Association
publisher.none.fl_str_mv International Frequency Sensor Association
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614517864005632
score 13.070432