Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina
- Autores
- Olivera Rodriguez, Paula Sara; Holzman, Mauro Ezequiel; Mujica, Claudio Ramon; Rivas, Raúl Eduardo; Aldaya, Maite M.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Agriculture is among the main causes of water pollution. Currently, 75% of global anthropogenic nitrogen (N) loads come from leaching/runoff from cropland. The grey water footprint (GWF) is an indicator of water resource pollution, which allows for the evaluation and monitoring of pollutant loads (L) that can affect water. However, in the literature, there are different approaches to estimating L and thus contrasting GWF estimates: (A1) leaching/runoff fraction approach, (A2) surplus approach and (A3) soil nitrogen balance approach. This study compares these approaches for the first time to assess which one is best adapted to real crop production conditions and optimises GWF calculation. The three approaches are applied to assess N-related GWF in barley and soybean. For barley in 2019, A3 estimated a GWF value 285 to 196% higher than A1, while in 2020, the A3 estimate was 135 to 81% higher. Soybean did not produce a GWF due to the crop characteristics. A3 incorporated N partitioning within the agroecosystem and considered different N inputs beyond fertilization, improving the accuracy of L and GWF estimation. Providing robust GWF results to decision-makers may help to prevent or reduce the impacts of activities that threaten the world’s water ecosystems and supply.
Fil: Olivera Rodriguez, Paula Sara. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; Argentina
Fil: Holzman, Mauro Ezequiel. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; Argentina
Fil: Mujica, Claudio Ramon. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; Argentina
Fil: Rivas, Raúl Eduardo. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; Argentina
Fil: Aldaya, Maite M.. Instituto de Innovacion y Sostenibilidad En la Cadena Agroalimentaria (is-food) ; Universidad Publica de Navarra; - Materia
-
AGRICULTURAL PRACTICES
LEACHING/RUNOFF
MINERALIZATION
NITROGEN FERTILIZATION
POLLUTION LOAD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/214708
Ver los metadatos del registro completo
| id |
CONICETDig_d3874e7e827f961c4d4c7b4338b7d74f |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/214708 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in ArgentinaOlivera Rodriguez, Paula SaraHolzman, Mauro EzequielMujica, Claudio RamonRivas, Raúl EduardoAldaya, Maite M.AGRICULTURAL PRACTICESLEACHING/RUNOFFMINERALIZATIONNITROGEN FERTILIZATIONPOLLUTION LOADhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Agriculture is among the main causes of water pollution. Currently, 75% of global anthropogenic nitrogen (N) loads come from leaching/runoff from cropland. The grey water footprint (GWF) is an indicator of water resource pollution, which allows for the evaluation and monitoring of pollutant loads (L) that can affect water. However, in the literature, there are different approaches to estimating L and thus contrasting GWF estimates: (A1) leaching/runoff fraction approach, (A2) surplus approach and (A3) soil nitrogen balance approach. This study compares these approaches for the first time to assess which one is best adapted to real crop production conditions and optimises GWF calculation. The three approaches are applied to assess N-related GWF in barley and soybean. For barley in 2019, A3 estimated a GWF value 285 to 196% higher than A1, while in 2020, the A3 estimate was 135 to 81% higher. Soybean did not produce a GWF due to the crop characteristics. A3 incorporated N partitioning within the agroecosystem and considered different N inputs beyond fertilization, improving the accuracy of L and GWF estimation. Providing robust GWF results to decision-makers may help to prevent or reduce the impacts of activities that threaten the world’s water ecosystems and supply.Fil: Olivera Rodriguez, Paula Sara. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; ArgentinaFil: Holzman, Mauro Ezequiel. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; ArgentinaFil: Mujica, Claudio Ramon. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; ArgentinaFil: Rivas, Raúl Eduardo. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; ArgentinaFil: Aldaya, Maite M.. Instituto de Innovacion y Sostenibilidad En la Cadena Agroalimentaria (is-food) ; Universidad Publica de Navarra;MDPI2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214708Olivera Rodriguez, Paula Sara; Holzman, Mauro Ezequiel; Mujica, Claudio Ramon; Rivas, Raúl Eduardo; Aldaya, Maite M.; Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina; MDPI; Water; 13; 24; 12-2021; 1-192073-4441CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4441/13/24/3558info:eu-repo/semantics/altIdentifier/doi/10.3390/w13243558info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:27:02Zoai:ri.conicet.gov.ar:11336/214708instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:27:03.191CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina |
| title |
Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina |
| spellingShingle |
Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina Olivera Rodriguez, Paula Sara AGRICULTURAL PRACTICES LEACHING/RUNOFF MINERALIZATION NITROGEN FERTILIZATION POLLUTION LOAD |
| title_short |
Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina |
| title_full |
Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina |
| title_fullStr |
Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina |
| title_full_unstemmed |
Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina |
| title_sort |
Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina |
| dc.creator.none.fl_str_mv |
Olivera Rodriguez, Paula Sara Holzman, Mauro Ezequiel Mujica, Claudio Ramon Rivas, Raúl Eduardo Aldaya, Maite M. |
| author |
Olivera Rodriguez, Paula Sara |
| author_facet |
Olivera Rodriguez, Paula Sara Holzman, Mauro Ezequiel Mujica, Claudio Ramon Rivas, Raúl Eduardo Aldaya, Maite M. |
| author_role |
author |
| author2 |
Holzman, Mauro Ezequiel Mujica, Claudio Ramon Rivas, Raúl Eduardo Aldaya, Maite M. |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
AGRICULTURAL PRACTICES LEACHING/RUNOFF MINERALIZATION NITROGEN FERTILIZATION POLLUTION LOAD |
| topic |
AGRICULTURAL PRACTICES LEACHING/RUNOFF MINERALIZATION NITROGEN FERTILIZATION POLLUTION LOAD |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
| dc.description.none.fl_txt_mv |
Agriculture is among the main causes of water pollution. Currently, 75% of global anthropogenic nitrogen (N) loads come from leaching/runoff from cropland. The grey water footprint (GWF) is an indicator of water resource pollution, which allows for the evaluation and monitoring of pollutant loads (L) that can affect water. However, in the literature, there are different approaches to estimating L and thus contrasting GWF estimates: (A1) leaching/runoff fraction approach, (A2) surplus approach and (A3) soil nitrogen balance approach. This study compares these approaches for the first time to assess which one is best adapted to real crop production conditions and optimises GWF calculation. The three approaches are applied to assess N-related GWF in barley and soybean. For barley in 2019, A3 estimated a GWF value 285 to 196% higher than A1, while in 2020, the A3 estimate was 135 to 81% higher. Soybean did not produce a GWF due to the crop characteristics. A3 incorporated N partitioning within the agroecosystem and considered different N inputs beyond fertilization, improving the accuracy of L and GWF estimation. Providing robust GWF results to decision-makers may help to prevent or reduce the impacts of activities that threaten the world’s water ecosystems and supply. Fil: Olivera Rodriguez, Paula Sara. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; Argentina Fil: Holzman, Mauro Ezequiel. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; Argentina Fil: Mujica, Claudio Ramon. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; Argentina Fil: Rivas, Raúl Eduardo. Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff". - Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto de Hidrología de Llanuras "Dr. Eduardo Jorge Usunoff"; Argentina Fil: Aldaya, Maite M.. Instituto de Innovacion y Sostenibilidad En la Cadena Agroalimentaria (is-food) ; Universidad Publica de Navarra; |
| description |
Agriculture is among the main causes of water pollution. Currently, 75% of global anthropogenic nitrogen (N) loads come from leaching/runoff from cropland. The grey water footprint (GWF) is an indicator of water resource pollution, which allows for the evaluation and monitoring of pollutant loads (L) that can affect water. However, in the literature, there are different approaches to estimating L and thus contrasting GWF estimates: (A1) leaching/runoff fraction approach, (A2) surplus approach and (A3) soil nitrogen balance approach. This study compares these approaches for the first time to assess which one is best adapted to real crop production conditions and optimises GWF calculation. The three approaches are applied to assess N-related GWF in barley and soybean. For barley in 2019, A3 estimated a GWF value 285 to 196% higher than A1, while in 2020, the A3 estimate was 135 to 81% higher. Soybean did not produce a GWF due to the crop characteristics. A3 incorporated N partitioning within the agroecosystem and considered different N inputs beyond fertilization, improving the accuracy of L and GWF estimation. Providing robust GWF results to decision-makers may help to prevent or reduce the impacts of activities that threaten the world’s water ecosystems and supply. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/214708 Olivera Rodriguez, Paula Sara; Holzman, Mauro Ezequiel; Mujica, Claudio Ramon; Rivas, Raúl Eduardo; Aldaya, Maite M.; Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina; MDPI; Water; 13; 24; 12-2021; 1-19 2073-4441 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/214708 |
| identifier_str_mv |
Olivera Rodriguez, Paula Sara; Holzman, Mauro Ezequiel; Mujica, Claudio Ramon; Rivas, Raúl Eduardo; Aldaya, Maite M.; Different Approaches to Assessing Pollution Load: The Case of Nitrogen-Related Grey Water Footprint of Barley and Soybean in Argentina; MDPI; Water; 13; 24; 12-2021; 1-19 2073-4441 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4441/13/24/3558 info:eu-repo/semantics/altIdentifier/doi/10.3390/w13243558 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
MDPI |
| publisher.none.fl_str_mv |
MDPI |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781835211702272 |
| score |
12.982451 |