Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes
- Autores
- Escapa, Carlos Mauricio; Perillo, Gerardo Miguel E.; Iribarne, Oscar Osvaldo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Salt-marshes are under increasing threat, particularly from sea-level rise and increased wave action associated with climate change. The development and stability of these valuable habitats largely depend on complex interactions between biotic and abiotic processes operating at different scales. Also, interactions between biotic and abiotic processes drive internal morphological change in salt-marshes. In this paper we used a biogeomorphological approach to assess the impact of biological activities and interactions on salt pan formation in Sarcocornia-dominated salt marshes. Salt pans represent a key physiographic feature of salt-marshes and recent studies hypothesized that biogeomorphic processes could be related to salt pan formation in SW Atlantic salt-marshes. The glasswort Sarcocornia perennis is one of the dominant plants in the salt-marshes of the Bahía Blanca Estuary (Argentina) where they form patches up to 8 m in diameter. These salt-marshes are also inhabited in great densities by the burrowing crab Neohelice (Chasmagnathus) granulata whose bioturbation rates are among the highest reported for salt-marshes worldwide. A set of biological interactions between N. granulata and S. perennis appears to be responsible for salt pan development in these areas which has not been described elsewhere. The main objective of this work was to determine the ecological interactions occurring between plants and crabs that lead to salt pan formation by using field-based sampling and manipulative experiments. Our results showed that S. perennis facilitated crab colonization of the salt-marsh by buffering otherwise stressful physical conditions (e.g., temperature, desiccation). Crabs preferred to construct burrows underneath plants and, once they reach high densities (up to 40 burrows m− 2), the sediment reworking caused plant die-off in the central area of patches. At this state, the patches lose elevation and become depressed due to the continuous bioturbation by crabs. Thus, salt pans are generated in this case by a set of biogeomorphic processes that include pure ecological interactions such as plant facilitation of crab settlement and also indirect negative effects of crabs on plant survival. Furthermore, crab bioturbation affects sediment structure due to concentration of burrowing activity under plant canopies promoting elevation loss and leading, after a few years, to salt pan formation in a previously vegetated substrate.
Fil: Escapa, Carlos Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Marinas y Costeras; Argentina. Universidad Nacional de Mar del Plata; Argentina
Fil: Perillo, Gerardo Miguel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina. Universidad Nacional del Sur. Departamento de Geología; Argentina
Fil: Iribarne, Oscar Osvaldo. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Departamento de Biologia. Laboratorio de Ecologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Marinas y Costeras; Argentina. Universidad Nacional de Mar del Plata; Argentina - Materia
-
Biogeomorphology
Ecomorphodynamics
Salt-Marsh
Salt Pans
Marsh Crabs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/12508
Ver los metadatos del registro completo
id |
CONICETDig_d377b4a1c4ac4c71f4a0371e9bb1c146 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/12508 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshesEscapa, Carlos MauricioPerillo, Gerardo Miguel E.Iribarne, Oscar OsvaldoBiogeomorphologyEcomorphodynamicsSalt-MarshSalt PansMarsh Crabshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Salt-marshes are under increasing threat, particularly from sea-level rise and increased wave action associated with climate change. The development and stability of these valuable habitats largely depend on complex interactions between biotic and abiotic processes operating at different scales. Also, interactions between biotic and abiotic processes drive internal morphological change in salt-marshes. In this paper we used a biogeomorphological approach to assess the impact of biological activities and interactions on salt pan formation in Sarcocornia-dominated salt marshes. Salt pans represent a key physiographic feature of salt-marshes and recent studies hypothesized that biogeomorphic processes could be related to salt pan formation in SW Atlantic salt-marshes. The glasswort Sarcocornia perennis is one of the dominant plants in the salt-marshes of the Bahía Blanca Estuary (Argentina) where they form patches up to 8 m in diameter. These salt-marshes are also inhabited in great densities by the burrowing crab Neohelice (Chasmagnathus) granulata whose bioturbation rates are among the highest reported for salt-marshes worldwide. A set of biological interactions between N. granulata and S. perennis appears to be responsible for salt pan development in these areas which has not been described elsewhere. The main objective of this work was to determine the ecological interactions occurring between plants and crabs that lead to salt pan formation by using field-based sampling and manipulative experiments. Our results showed that S. perennis facilitated crab colonization of the salt-marsh by buffering otherwise stressful physical conditions (e.g., temperature, desiccation). Crabs preferred to construct burrows underneath plants and, once they reach high densities (up to 40 burrows m− 2), the sediment reworking caused plant die-off in the central area of patches. At this state, the patches lose elevation and become depressed due to the continuous bioturbation by crabs. Thus, salt pans are generated in this case by a set of biogeomorphic processes that include pure ecological interactions such as plant facilitation of crab settlement and also indirect negative effects of crabs on plant survival. Furthermore, crab bioturbation affects sediment structure due to concentration of burrowing activity under plant canopies promoting elevation loss and leading, after a few years, to salt pan formation in a previously vegetated substrate.Fil: Escapa, Carlos Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Marinas y Costeras; Argentina. Universidad Nacional de Mar del Plata; ArgentinaFil: Perillo, Gerardo Miguel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina. Universidad Nacional del Sur. Departamento de Geología; ArgentinaFil: Iribarne, Oscar Osvaldo. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Departamento de Biologia. Laboratorio de Ecologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Marinas y Costeras; Argentina. Universidad Nacional de Mar del Plata; ArgentinaElsevier Science2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12508Escapa, Carlos Mauricio; Perillo, Gerardo Miguel E.; Iribarne, Oscar Osvaldo; Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes; Elsevier Science; Geomorphology; 228; 1-2015; 147-1570169-555Xenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169555X14004619info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomorph.2014.08.032info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:57:51Zoai:ri.conicet.gov.ar:11336/12508instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:57:51.405CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes |
title |
Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes |
spellingShingle |
Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes Escapa, Carlos Mauricio Biogeomorphology Ecomorphodynamics Salt-Marsh Salt Pans Marsh Crabs |
title_short |
Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes |
title_full |
Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes |
title_fullStr |
Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes |
title_full_unstemmed |
Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes |
title_sort |
Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes |
dc.creator.none.fl_str_mv |
Escapa, Carlos Mauricio Perillo, Gerardo Miguel E. Iribarne, Oscar Osvaldo |
author |
Escapa, Carlos Mauricio |
author_facet |
Escapa, Carlos Mauricio Perillo, Gerardo Miguel E. Iribarne, Oscar Osvaldo |
author_role |
author |
author2 |
Perillo, Gerardo Miguel E. Iribarne, Oscar Osvaldo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Biogeomorphology Ecomorphodynamics Salt-Marsh Salt Pans Marsh Crabs |
topic |
Biogeomorphology Ecomorphodynamics Salt-Marsh Salt Pans Marsh Crabs |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Salt-marshes are under increasing threat, particularly from sea-level rise and increased wave action associated with climate change. The development and stability of these valuable habitats largely depend on complex interactions between biotic and abiotic processes operating at different scales. Also, interactions between biotic and abiotic processes drive internal morphological change in salt-marshes. In this paper we used a biogeomorphological approach to assess the impact of biological activities and interactions on salt pan formation in Sarcocornia-dominated salt marshes. Salt pans represent a key physiographic feature of salt-marshes and recent studies hypothesized that biogeomorphic processes could be related to salt pan formation in SW Atlantic salt-marshes. The glasswort Sarcocornia perennis is one of the dominant plants in the salt-marshes of the Bahía Blanca Estuary (Argentina) where they form patches up to 8 m in diameter. These salt-marshes are also inhabited in great densities by the burrowing crab Neohelice (Chasmagnathus) granulata whose bioturbation rates are among the highest reported for salt-marshes worldwide. A set of biological interactions between N. granulata and S. perennis appears to be responsible for salt pan development in these areas which has not been described elsewhere. The main objective of this work was to determine the ecological interactions occurring between plants and crabs that lead to salt pan formation by using field-based sampling and manipulative experiments. Our results showed that S. perennis facilitated crab colonization of the salt-marsh by buffering otherwise stressful physical conditions (e.g., temperature, desiccation). Crabs preferred to construct burrows underneath plants and, once they reach high densities (up to 40 burrows m− 2), the sediment reworking caused plant die-off in the central area of patches. At this state, the patches lose elevation and become depressed due to the continuous bioturbation by crabs. Thus, salt pans are generated in this case by a set of biogeomorphic processes that include pure ecological interactions such as plant facilitation of crab settlement and also indirect negative effects of crabs on plant survival. Furthermore, crab bioturbation affects sediment structure due to concentration of burrowing activity under plant canopies promoting elevation loss and leading, after a few years, to salt pan formation in a previously vegetated substrate. Fil: Escapa, Carlos Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Marinas y Costeras; Argentina. Universidad Nacional de Mar del Plata; Argentina Fil: Perillo, Gerardo Miguel E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto Argentino de Oceanografía (i); Argentina. Universidad Nacional del Sur. Departamento de Geología; Argentina Fil: Iribarne, Oscar Osvaldo. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Departamento de Biologia. Laboratorio de Ecologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Marinas y Costeras; Argentina. Universidad Nacional de Mar del Plata; Argentina |
description |
Salt-marshes are under increasing threat, particularly from sea-level rise and increased wave action associated with climate change. The development and stability of these valuable habitats largely depend on complex interactions between biotic and abiotic processes operating at different scales. Also, interactions between biotic and abiotic processes drive internal morphological change in salt-marshes. In this paper we used a biogeomorphological approach to assess the impact of biological activities and interactions on salt pan formation in Sarcocornia-dominated salt marshes. Salt pans represent a key physiographic feature of salt-marshes and recent studies hypothesized that biogeomorphic processes could be related to salt pan formation in SW Atlantic salt-marshes. The glasswort Sarcocornia perennis is one of the dominant plants in the salt-marshes of the Bahía Blanca Estuary (Argentina) where they form patches up to 8 m in diameter. These salt-marshes are also inhabited in great densities by the burrowing crab Neohelice (Chasmagnathus) granulata whose bioturbation rates are among the highest reported for salt-marshes worldwide. A set of biological interactions between N. granulata and S. perennis appears to be responsible for salt pan development in these areas which has not been described elsewhere. The main objective of this work was to determine the ecological interactions occurring between plants and crabs that lead to salt pan formation by using field-based sampling and manipulative experiments. Our results showed that S. perennis facilitated crab colonization of the salt-marsh by buffering otherwise stressful physical conditions (e.g., temperature, desiccation). Crabs preferred to construct burrows underneath plants and, once they reach high densities (up to 40 burrows m− 2), the sediment reworking caused plant die-off in the central area of patches. At this state, the patches lose elevation and become depressed due to the continuous bioturbation by crabs. Thus, salt pans are generated in this case by a set of biogeomorphic processes that include pure ecological interactions such as plant facilitation of crab settlement and also indirect negative effects of crabs on plant survival. Furthermore, crab bioturbation affects sediment structure due to concentration of burrowing activity under plant canopies promoting elevation loss and leading, after a few years, to salt pan formation in a previously vegetated substrate. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/12508 Escapa, Carlos Mauricio; Perillo, Gerardo Miguel E.; Iribarne, Oscar Osvaldo; Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes; Elsevier Science; Geomorphology; 228; 1-2015; 147-157 0169-555X |
url |
http://hdl.handle.net/11336/12508 |
identifier_str_mv |
Escapa, Carlos Mauricio; Perillo, Gerardo Miguel E.; Iribarne, Oscar Osvaldo; Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes; Elsevier Science; Geomorphology; 228; 1-2015; 147-157 0169-555X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169555X14004619 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomorph.2014.08.032 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269488391651328 |
score |
13.13397 |