On the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time Scales
- Autores
- Amster, Pablo Gustavo; Kuna, Mariel Paula; Dallos Santos, Dionicio Pastor
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study some properties of the range of the relativistic pendulum operator P, that is, the set of possible continuous T-periodic forcing terms p for which the equation P x = p admits a T-periodic solution over a T - periodic time scale T. Writing p ( t) = p 0 ( t)+ p, we prove the existence of a compact interval I ( p 0) such that the problem has a solution if and only if p ∈ I ( p 0) and at least two different solutions when p is an interior point. Furthermore, we give sufficient conditions for nondegeneracy; specifically, we prove that if T is small then I ( p 0) is a neighbourhood of 0 for arbitrary p 0. Well known results for the continuous case are generalized to the time scales context.
Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Kuna, Mariel Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Dallos Santos, Dionicio Pastor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
RELATIVIST PENDULUM
PERIODIC SOLUTIONS
TIME SCALES
DEGENERATE EQUATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146952
Ver los metadatos del registro completo
id |
CONICETDig_d2f4513458541efc190f26522846e8a7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146952 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time ScalesAmster, Pablo GustavoKuna, Mariel PaulaDallos Santos, Dionicio PastorRELATIVIST PENDULUMPERIODIC SOLUTIONSTIME SCALESDEGENERATE EQUATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study some properties of the range of the relativistic pendulum operator P, that is, the set of possible continuous T-periodic forcing terms p for which the equation P x = p admits a T-periodic solution over a T - periodic time scale T. Writing p ( t) = p 0 ( t)+ p, we prove the existence of a compact interval I ( p 0) such that the problem has a solution if and only if p ∈ I ( p 0) and at least two different solutions when p is an interior point. Furthermore, we give sufficient conditions for nondegeneracy; specifically, we prove that if T is small then I ( p 0) is a neighbourhood of 0 for arbitrary p 0. Well known results for the continuous case are generalized to the time scales context.Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Kuna, Mariel Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Dallos Santos, Dionicio Pastor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaarXiv.org2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146952Amster, Pablo Gustavo; Kuna, Mariel Paula; Dallos Santos, Dionicio Pastor; On the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time Scales; arXiv.org; Cornell University; 1; 5-2020; 1-112331-8422CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2005.12851info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:59Zoai:ri.conicet.gov.ar:11336/146952instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:59.356CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time Scales |
title |
On the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time Scales |
spellingShingle |
On the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time Scales Amster, Pablo Gustavo RELATIVIST PENDULUM PERIODIC SOLUTIONS TIME SCALES DEGENERATE EQUATIONS |
title_short |
On the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time Scales |
title_full |
On the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time Scales |
title_fullStr |
On the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time Scales |
title_full_unstemmed |
On the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time Scales |
title_sort |
On the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time Scales |
dc.creator.none.fl_str_mv |
Amster, Pablo Gustavo Kuna, Mariel Paula Dallos Santos, Dionicio Pastor |
author |
Amster, Pablo Gustavo |
author_facet |
Amster, Pablo Gustavo Kuna, Mariel Paula Dallos Santos, Dionicio Pastor |
author_role |
author |
author2 |
Kuna, Mariel Paula Dallos Santos, Dionicio Pastor |
author2_role |
author author |
dc.subject.none.fl_str_mv |
RELATIVIST PENDULUM PERIODIC SOLUTIONS TIME SCALES DEGENERATE EQUATIONS |
topic |
RELATIVIST PENDULUM PERIODIC SOLUTIONS TIME SCALES DEGENERATE EQUATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study some properties of the range of the relativistic pendulum operator P, that is, the set of possible continuous T-periodic forcing terms p for which the equation P x = p admits a T-periodic solution over a T - periodic time scale T. Writing p ( t) = p 0 ( t)+ p, we prove the existence of a compact interval I ( p 0) such that the problem has a solution if and only if p ∈ I ( p 0) and at least two different solutions when p is an interior point. Furthermore, we give sufficient conditions for nondegeneracy; specifically, we prove that if T is small then I ( p 0) is a neighbourhood of 0 for arbitrary p 0. Well known results for the continuous case are generalized to the time scales context. Fil: Amster, Pablo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Kuna, Mariel Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Dallos Santos, Dionicio Pastor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We study some properties of the range of the relativistic pendulum operator P, that is, the set of possible continuous T-periodic forcing terms p for which the equation P x = p admits a T-periodic solution over a T - periodic time scale T. Writing p ( t) = p 0 ( t)+ p, we prove the existence of a compact interval I ( p 0) such that the problem has a solution if and only if p ∈ I ( p 0) and at least two different solutions when p is an interior point. Furthermore, we give sufficient conditions for nondegeneracy; specifically, we prove that if T is small then I ( p 0) is a neighbourhood of 0 for arbitrary p 0. Well known results for the continuous case are generalized to the time scales context. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146952 Amster, Pablo Gustavo; Kuna, Mariel Paula; Dallos Santos, Dionicio Pastor; On the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time Scales; arXiv.org; Cornell University; 1; 5-2020; 1-11 2331-8422 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146952 |
identifier_str_mv |
Amster, Pablo Gustavo; Kuna, Mariel Paula; Dallos Santos, Dionicio Pastor; On the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time Scales; arXiv.org; Cornell University; 1; 5-2020; 1-11 2331-8422 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2005.12851 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
arXiv.org |
publisher.none.fl_str_mv |
arXiv.org |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613493411545088 |
score |
13.070432 |