Solar Cycle Propagation, Memory, and Prediction: Insights from a Century of Magnetic Proxies

Autores
Muñoz Jaramillo, Andrés; Dasi Espuig, María; Balmaceda, Laura Antonia; Deluca, Edward
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The solar cycle and its associated magnetic activity are the main drivers behind changes in the interplanetary environment and Earth’s upper atmosphere (commonly referred to as space weather). These changes have a direct impact on the lifetime of space-based assets and can create hazards to astronauts in space. In recent years there has been an effort to develop accurate solar cycle predictions (with aims at predicting the long-term evolution of space weather), leading to nearly a hundred widely spread predictions for the amplitude of solar cycle 24. A major contributor to the disagreement is the lack of direct long-term databases covering different components of the solar magnetic field (toroidal versus poloidal). Here, we use sunspot area and polar faculae measurements spanning a full century (as our toroidal and poloidal field proxies) to study solar cycle propagation, memory, and prediction. Our results substantiate predictions based on the polar magnetic fields, whereas we find sunspot area to be uncorrelated with cycle amplitude unless multiplied by area-weighted average tilt. This suggests that the joint assimilation of tilt and sunspot area is a better choice (with aims to cycle prediction) than sunspot area alone, and adds to the evidence in favor of active region emergence and decay as the main mechanism of poloidal field generation (i.e., the Babcock–Leighton mechanism). Finally, by looking at the correlation between our poloidal and toroidal proxies across multiple cycles, we find solar cycle memory to be limited to only one cycle.
Fil: Muñoz Jaramillo, Andrés. Harvard-Smithsonian Center for Astrophysics; Estados Unidos de América;
Fil: Dasi Espuig, María. Max-Planck-Institut fur Sonnensystemforschung; Alemania
Fil: Balmaceda, Laura Antonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico - CONICET- San Juan. Instituto de Ciencias Astronómicas de la Tierra y del Espacio; Argentina
Fil: Deluca, Edward. Harvard-Smithsonian Center for Astrophysics; Estados Unidos de América;
Materia
Solar Activity
Solar Dynamo
Surface Magnetism
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/1644

id CONICETDig_d2c9a04d996771cb3964e864a5050082
oai_identifier_str oai:ri.conicet.gov.ar:11336/1644
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Solar Cycle Propagation, Memory, and Prediction: Insights from a Century of Magnetic ProxiesMuñoz Jaramillo, AndrésDasi Espuig, MaríaBalmaceda, Laura AntoniaDeluca, EdwardSolar ActivitySolar DynamoSurface Magnetismhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The solar cycle and its associated magnetic activity are the main drivers behind changes in the interplanetary environment and Earth’s upper atmosphere (commonly referred to as space weather). These changes have a direct impact on the lifetime of space-based assets and can create hazards to astronauts in space. In recent years there has been an effort to develop accurate solar cycle predictions (with aims at predicting the long-term evolution of space weather), leading to nearly a hundred widely spread predictions for the amplitude of solar cycle 24. A major contributor to the disagreement is the lack of direct long-term databases covering different components of the solar magnetic field (toroidal versus poloidal). Here, we use sunspot area and polar faculae measurements spanning a full century (as our toroidal and poloidal field proxies) to study solar cycle propagation, memory, and prediction. Our results substantiate predictions based on the polar magnetic fields, whereas we find sunspot area to be uncorrelated with cycle amplitude unless multiplied by area-weighted average tilt. This suggests that the joint assimilation of tilt and sunspot area is a better choice (with aims to cycle prediction) than sunspot area alone, and adds to the evidence in favor of active region emergence and decay as the main mechanism of poloidal field generation (i.e., the Babcock–Leighton mechanism). Finally, by looking at the correlation between our poloidal and toroidal proxies across multiple cycles, we find solar cycle memory to be limited to only one cycle.Fil: Muñoz Jaramillo, Andrés. Harvard-Smithsonian Center for Astrophysics; Estados Unidos de América;Fil: Dasi Espuig, María. Max-Planck-Institut fur Sonnensystemforschung; AlemaniaFil: Balmaceda, Laura Antonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico - CONICET- San Juan. Instituto de Ciencias Astronómicas de la Tierra y del Espacio; ArgentinaFil: Deluca, Edward. Harvard-Smithsonian Center for Astrophysics; Estados Unidos de América;IOP Publishing2013-04-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/1644Muñoz Jaramillo, Andrés; Dasi Espuig, María; Balmaceda, Laura Antonia; Deluca, Edward; Solar Cycle Propagation, Memory, and Prediction: Insights from a Century of Magnetic Proxies; IOP Publishing; The Astrophysical Journal Letters; 767; 25; 2-4-2013; 1-72041-8205enginfo:eu-repo/semantics/altIdentifier/doi/doi:10.1088/2041-8205/767/2/L25info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/2041-8205/767/2/L25/pdf/2041-8205_767_2_L25.pdfinfo:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1304.3151info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:16Zoai:ri.conicet.gov.ar:11336/1644instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:17.025CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Solar Cycle Propagation, Memory, and Prediction: Insights from a Century of Magnetic Proxies
title Solar Cycle Propagation, Memory, and Prediction: Insights from a Century of Magnetic Proxies
spellingShingle Solar Cycle Propagation, Memory, and Prediction: Insights from a Century of Magnetic Proxies
Muñoz Jaramillo, Andrés
Solar Activity
Solar Dynamo
Surface Magnetism
title_short Solar Cycle Propagation, Memory, and Prediction: Insights from a Century of Magnetic Proxies
title_full Solar Cycle Propagation, Memory, and Prediction: Insights from a Century of Magnetic Proxies
title_fullStr Solar Cycle Propagation, Memory, and Prediction: Insights from a Century of Magnetic Proxies
title_full_unstemmed Solar Cycle Propagation, Memory, and Prediction: Insights from a Century of Magnetic Proxies
title_sort Solar Cycle Propagation, Memory, and Prediction: Insights from a Century of Magnetic Proxies
dc.creator.none.fl_str_mv Muñoz Jaramillo, Andrés
Dasi Espuig, María
Balmaceda, Laura Antonia
Deluca, Edward
author Muñoz Jaramillo, Andrés
author_facet Muñoz Jaramillo, Andrés
Dasi Espuig, María
Balmaceda, Laura Antonia
Deluca, Edward
author_role author
author2 Dasi Espuig, María
Balmaceda, Laura Antonia
Deluca, Edward
author2_role author
author
author
dc.subject.none.fl_str_mv Solar Activity
Solar Dynamo
Surface Magnetism
topic Solar Activity
Solar Dynamo
Surface Magnetism
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The solar cycle and its associated magnetic activity are the main drivers behind changes in the interplanetary environment and Earth’s upper atmosphere (commonly referred to as space weather). These changes have a direct impact on the lifetime of space-based assets and can create hazards to astronauts in space. In recent years there has been an effort to develop accurate solar cycle predictions (with aims at predicting the long-term evolution of space weather), leading to nearly a hundred widely spread predictions for the amplitude of solar cycle 24. A major contributor to the disagreement is the lack of direct long-term databases covering different components of the solar magnetic field (toroidal versus poloidal). Here, we use sunspot area and polar faculae measurements spanning a full century (as our toroidal and poloidal field proxies) to study solar cycle propagation, memory, and prediction. Our results substantiate predictions based on the polar magnetic fields, whereas we find sunspot area to be uncorrelated with cycle amplitude unless multiplied by area-weighted average tilt. This suggests that the joint assimilation of tilt and sunspot area is a better choice (with aims to cycle prediction) than sunspot area alone, and adds to the evidence in favor of active region emergence and decay as the main mechanism of poloidal field generation (i.e., the Babcock–Leighton mechanism). Finally, by looking at the correlation between our poloidal and toroidal proxies across multiple cycles, we find solar cycle memory to be limited to only one cycle.
Fil: Muñoz Jaramillo, Andrés. Harvard-Smithsonian Center for Astrophysics; Estados Unidos de América;
Fil: Dasi Espuig, María. Max-Planck-Institut fur Sonnensystemforschung; Alemania
Fil: Balmaceda, Laura Antonia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Cientifico Tecnológico - CONICET- San Juan. Instituto de Ciencias Astronómicas de la Tierra y del Espacio; Argentina
Fil: Deluca, Edward. Harvard-Smithsonian Center for Astrophysics; Estados Unidos de América;
description The solar cycle and its associated magnetic activity are the main drivers behind changes in the interplanetary environment and Earth’s upper atmosphere (commonly referred to as space weather). These changes have a direct impact on the lifetime of space-based assets and can create hazards to astronauts in space. In recent years there has been an effort to develop accurate solar cycle predictions (with aims at predicting the long-term evolution of space weather), leading to nearly a hundred widely spread predictions for the amplitude of solar cycle 24. A major contributor to the disagreement is the lack of direct long-term databases covering different components of the solar magnetic field (toroidal versus poloidal). Here, we use sunspot area and polar faculae measurements spanning a full century (as our toroidal and poloidal field proxies) to study solar cycle propagation, memory, and prediction. Our results substantiate predictions based on the polar magnetic fields, whereas we find sunspot area to be uncorrelated with cycle amplitude unless multiplied by area-weighted average tilt. This suggests that the joint assimilation of tilt and sunspot area is a better choice (with aims to cycle prediction) than sunspot area alone, and adds to the evidence in favor of active region emergence and decay as the main mechanism of poloidal field generation (i.e., the Babcock–Leighton mechanism). Finally, by looking at the correlation between our poloidal and toroidal proxies across multiple cycles, we find solar cycle memory to be limited to only one cycle.
publishDate 2013
dc.date.none.fl_str_mv 2013-04-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/1644
Muñoz Jaramillo, Andrés; Dasi Espuig, María; Balmaceda, Laura Antonia; Deluca, Edward; Solar Cycle Propagation, Memory, and Prediction: Insights from a Century of Magnetic Proxies; IOP Publishing; The Astrophysical Journal Letters; 767; 25; 2-4-2013; 1-7
2041-8205
url http://hdl.handle.net/11336/1644
identifier_str_mv Muñoz Jaramillo, Andrés; Dasi Espuig, María; Balmaceda, Laura Antonia; Deluca, Edward; Solar Cycle Propagation, Memory, and Prediction: Insights from a Century of Magnetic Proxies; IOP Publishing; The Astrophysical Journal Letters; 767; 25; 2-4-2013; 1-7
2041-8205
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/doi:10.1088/2041-8205/767/2/L25
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/2041-8205/767/2/L25/pdf/2041-8205_767_2_L25.pdf
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1304.3151
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613691829387264
score 13.070432