Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review

Autores
Schipani, Federico; Miller, D. R.; Ponce, Miguel Adolfo; Aldao, Celso Manuel; Akbar, S. A.; Morris, P. A.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Impedance spectroscopy is essential in understanding the physical and chemical processes that affect theelectronic behavior of semiconducting metal oxide-based gas sensor materials, but is often overlooked oravoided by researchers because of the complexity of proper data interpretation. These metal oxide nanomaterialsare promising as resistive-type gas sensors because they have the potential to meet the critical need thathas developed for low-power, low-cost, portable gas sensors. However, the mechanisms that determine thesematerials? gas-sensing performance is still not understood well enough to advance the field toward bottom-updesign for specific applications. Direct current (DC) measurements give information on the device performancesuch as sensitivity, selectivity and response time. Alternating current (AC) measurements are a lesser-usedapproach that can give the same information, but also allow the varying contributions from the bulk, surfacesand interfaces, grain boundaries, electrode contacts and even substrate to be quantified, whether we work withpolycrystalline materials or single-crystal structures such as nanowires and nanorods. With this technique it ispossible to extract fundamental information about intergranular potential energy barrier height, width and donorconcentration changes in different atmospheres and temperatures. The equivalent circuit method is the mostcommon method of relating the impedance data to the physical system. However, the main weakness of thismethod is that the ideal circuit elements used in the fitting can be connected in many different ways to fit thesame signal. To properly apply this technique, the model development should consider both the impedancemeasurement and the physical and chemical characteristics of the system being studied. This review presentsa detailed description of impedance spectroscopy techniques for fundamental analysis of materials behavior ingas sensing applications, including proper data interpretation and types of fitting models commonly used, toenable researchers to better apply these techniques toward understanding of their materials systems.
Fil: Schipani, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Miller, D. R.. Ohio State University; Estados Unidos
Fil: Ponce, Miguel Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Aldao, Celso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Akbar, S. A.. Ohio State University; Estados Unidos
Fil: Morris, P. A.. Ohio State University; Estados Unidos
Materia
Semiconductors
Impedance Spectroscopy
Capacitance
Models
Conduction Mechanisms
Oxide-Based Gas Sensors
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/33388

id CONICETDig_d14934b6858a278ceb860f79baa3a9c9
oai_identifier_str oai:ri.conicet.gov.ar:11336/33388
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A reviewSchipani, FedericoMiller, D. R.Ponce, Miguel AdolfoAldao, Celso ManuelAkbar, S. A.Morris, P. A.SemiconductorsImpedance SpectroscopyCapacitanceModelsConduction MechanismsOxide-Based Gas Sensorshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Impedance spectroscopy is essential in understanding the physical and chemical processes that affect theelectronic behavior of semiconducting metal oxide-based gas sensor materials, but is often overlooked oravoided by researchers because of the complexity of proper data interpretation. These metal oxide nanomaterialsare promising as resistive-type gas sensors because they have the potential to meet the critical need thathas developed for low-power, low-cost, portable gas sensors. However, the mechanisms that determine thesematerials? gas-sensing performance is still not understood well enough to advance the field toward bottom-updesign for specific applications. Direct current (DC) measurements give information on the device performancesuch as sensitivity, selectivity and response time. Alternating current (AC) measurements are a lesser-usedapproach that can give the same information, but also allow the varying contributions from the bulk, surfacesand interfaces, grain boundaries, electrode contacts and even substrate to be quantified, whether we work withpolycrystalline materials or single-crystal structures such as nanowires and nanorods. With this technique it ispossible to extract fundamental information about intergranular potential energy barrier height, width and donorconcentration changes in different atmospheres and temperatures. The equivalent circuit method is the mostcommon method of relating the impedance data to the physical system. However, the main weakness of thismethod is that the ideal circuit elements used in the fitting can be connected in many different ways to fit thesame signal. To properly apply this technique, the model development should consider both the impedancemeasurement and the physical and chemical characteristics of the system being studied. This review presentsa detailed description of impedance spectroscopy techniques for fundamental analysis of materials behavior ingas sensing applications, including proper data interpretation and types of fitting models commonly used, toenable researchers to better apply these techniques toward understanding of their materials systems.Fil: Schipani, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Miller, D. R.. Ohio State University; Estados UnidosFil: Ponce, Miguel Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Aldao, Celso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Akbar, S. A.. Ohio State University; Estados UnidosFil: Morris, P. A.. Ohio State University; Estados UnidosAmerican Scientific Publishers2016-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33388Ponce, Miguel Adolfo; Akbar, S. A.; Schipani, Federico; Aldao, Celso Manuel; Morris, P. A.; Miller, D. R.; et al.; Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review; American Scientific Publishers; Reviews in Advanced Sciences and Engineering; 5; 1; 1-3-2016; 86-1052157-9121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.aspbs.com/rase/contents_rase51.htminfo:eu-repo/semantics/altIdentifier/doi/10.1166/rase.2016.1109info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:30:30Zoai:ri.conicet.gov.ar:11336/33388instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:30:30.682CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review
title Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review
spellingShingle Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review
Schipani, Federico
Semiconductors
Impedance Spectroscopy
Capacitance
Models
Conduction Mechanisms
Oxide-Based Gas Sensors
title_short Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review
title_full Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review
title_fullStr Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review
title_full_unstemmed Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review
title_sort Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review
dc.creator.none.fl_str_mv Schipani, Federico
Miller, D. R.
Ponce, Miguel Adolfo
Aldao, Celso Manuel
Akbar, S. A.
Morris, P. A.
author Schipani, Federico
author_facet Schipani, Federico
Miller, D. R.
Ponce, Miguel Adolfo
Aldao, Celso Manuel
Akbar, S. A.
Morris, P. A.
author_role author
author2 Miller, D. R.
Ponce, Miguel Adolfo
Aldao, Celso Manuel
Akbar, S. A.
Morris, P. A.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Semiconductors
Impedance Spectroscopy
Capacitance
Models
Conduction Mechanisms
Oxide-Based Gas Sensors
topic Semiconductors
Impedance Spectroscopy
Capacitance
Models
Conduction Mechanisms
Oxide-Based Gas Sensors
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Impedance spectroscopy is essential in understanding the physical and chemical processes that affect theelectronic behavior of semiconducting metal oxide-based gas sensor materials, but is often overlooked oravoided by researchers because of the complexity of proper data interpretation. These metal oxide nanomaterialsare promising as resistive-type gas sensors because they have the potential to meet the critical need thathas developed for low-power, low-cost, portable gas sensors. However, the mechanisms that determine thesematerials? gas-sensing performance is still not understood well enough to advance the field toward bottom-updesign for specific applications. Direct current (DC) measurements give information on the device performancesuch as sensitivity, selectivity and response time. Alternating current (AC) measurements are a lesser-usedapproach that can give the same information, but also allow the varying contributions from the bulk, surfacesand interfaces, grain boundaries, electrode contacts and even substrate to be quantified, whether we work withpolycrystalline materials or single-crystal structures such as nanowires and nanorods. With this technique it ispossible to extract fundamental information about intergranular potential energy barrier height, width and donorconcentration changes in different atmospheres and temperatures. The equivalent circuit method is the mostcommon method of relating the impedance data to the physical system. However, the main weakness of thismethod is that the ideal circuit elements used in the fitting can be connected in many different ways to fit thesame signal. To properly apply this technique, the model development should consider both the impedancemeasurement and the physical and chemical characteristics of the system being studied. This review presentsa detailed description of impedance spectroscopy techniques for fundamental analysis of materials behavior ingas sensing applications, including proper data interpretation and types of fitting models commonly used, toenable researchers to better apply these techniques toward understanding of their materials systems.
Fil: Schipani, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Miller, D. R.. Ohio State University; Estados Unidos
Fil: Ponce, Miguel Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Aldao, Celso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Akbar, S. A.. Ohio State University; Estados Unidos
Fil: Morris, P. A.. Ohio State University; Estados Unidos
description Impedance spectroscopy is essential in understanding the physical and chemical processes that affect theelectronic behavior of semiconducting metal oxide-based gas sensor materials, but is often overlooked oravoided by researchers because of the complexity of proper data interpretation. These metal oxide nanomaterialsare promising as resistive-type gas sensors because they have the potential to meet the critical need thathas developed for low-power, low-cost, portable gas sensors. However, the mechanisms that determine thesematerials? gas-sensing performance is still not understood well enough to advance the field toward bottom-updesign for specific applications. Direct current (DC) measurements give information on the device performancesuch as sensitivity, selectivity and response time. Alternating current (AC) measurements are a lesser-usedapproach that can give the same information, but also allow the varying contributions from the bulk, surfacesand interfaces, grain boundaries, electrode contacts and even substrate to be quantified, whether we work withpolycrystalline materials or single-crystal structures such as nanowires and nanorods. With this technique it ispossible to extract fundamental information about intergranular potential energy barrier height, width and donorconcentration changes in different atmospheres and temperatures. The equivalent circuit method is the mostcommon method of relating the impedance data to the physical system. However, the main weakness of thismethod is that the ideal circuit elements used in the fitting can be connected in many different ways to fit thesame signal. To properly apply this technique, the model development should consider both the impedancemeasurement and the physical and chemical characteristics of the system being studied. This review presentsa detailed description of impedance spectroscopy techniques for fundamental analysis of materials behavior ingas sensing applications, including proper data interpretation and types of fitting models commonly used, toenable researchers to better apply these techniques toward understanding of their materials systems.
publishDate 2016
dc.date.none.fl_str_mv 2016-03-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/33388
Ponce, Miguel Adolfo; Akbar, S. A.; Schipani, Federico; Aldao, Celso Manuel; Morris, P. A.; Miller, D. R.; et al.; Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review; American Scientific Publishers; Reviews in Advanced Sciences and Engineering; 5; 1; 1-3-2016; 86-105
2157-9121
CONICET Digital
CONICET
url http://hdl.handle.net/11336/33388
identifier_str_mv Ponce, Miguel Adolfo; Akbar, S. A.; Schipani, Federico; Aldao, Celso Manuel; Morris, P. A.; Miller, D. R.; et al.; Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review; American Scientific Publishers; Reviews in Advanced Sciences and Engineering; 5; 1; 1-3-2016; 86-105
2157-9121
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.aspbs.com/rase/contents_rase51.htm
info:eu-repo/semantics/altIdentifier/doi/10.1166/rase.2016.1109
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Scientific Publishers
publisher.none.fl_str_mv American Scientific Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082782621597696
score 13.22299