Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review
- Autores
- Schipani, Federico; Miller, D. R.; Ponce, Miguel Adolfo; Aldao, Celso Manuel; Akbar, S. A.; Morris, P. A.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Impedance spectroscopy is essential in understanding the physical and chemical processes that affect theelectronic behavior of semiconducting metal oxide-based gas sensor materials, but is often overlooked oravoided by researchers because of the complexity of proper data interpretation. These metal oxide nanomaterialsare promising as resistive-type gas sensors because they have the potential to meet the critical need thathas developed for low-power, low-cost, portable gas sensors. However, the mechanisms that determine thesematerials? gas-sensing performance is still not understood well enough to advance the field toward bottom-updesign for specific applications. Direct current (DC) measurements give information on the device performancesuch as sensitivity, selectivity and response time. Alternating current (AC) measurements are a lesser-usedapproach that can give the same information, but also allow the varying contributions from the bulk, surfacesand interfaces, grain boundaries, electrode contacts and even substrate to be quantified, whether we work withpolycrystalline materials or single-crystal structures such as nanowires and nanorods. With this technique it ispossible to extract fundamental information about intergranular potential energy barrier height, width and donorconcentration changes in different atmospheres and temperatures. The equivalent circuit method is the mostcommon method of relating the impedance data to the physical system. However, the main weakness of thismethod is that the ideal circuit elements used in the fitting can be connected in many different ways to fit thesame signal. To properly apply this technique, the model development should consider both the impedancemeasurement and the physical and chemical characteristics of the system being studied. This review presentsa detailed description of impedance spectroscopy techniques for fundamental analysis of materials behavior ingas sensing applications, including proper data interpretation and types of fitting models commonly used, toenable researchers to better apply these techniques toward understanding of their materials systems.
Fil: Schipani, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Miller, D. R.. Ohio State University; Estados Unidos
Fil: Ponce, Miguel Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Aldao, Celso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Akbar, S. A.. Ohio State University; Estados Unidos
Fil: Morris, P. A.. Ohio State University; Estados Unidos - Materia
-
Semiconductors
Impedance Spectroscopy
Capacitance
Models
Conduction Mechanisms
Oxide-Based Gas Sensors - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/33388
Ver los metadatos del registro completo
id |
CONICETDig_d14934b6858a278ceb860f79baa3a9c9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/33388 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A reviewSchipani, FedericoMiller, D. R.Ponce, Miguel AdolfoAldao, Celso ManuelAkbar, S. A.Morris, P. A.SemiconductorsImpedance SpectroscopyCapacitanceModelsConduction MechanismsOxide-Based Gas Sensorshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Impedance spectroscopy is essential in understanding the physical and chemical processes that affect theelectronic behavior of semiconducting metal oxide-based gas sensor materials, but is often overlooked oravoided by researchers because of the complexity of proper data interpretation. These metal oxide nanomaterialsare promising as resistive-type gas sensors because they have the potential to meet the critical need thathas developed for low-power, low-cost, portable gas sensors. However, the mechanisms that determine thesematerials? gas-sensing performance is still not understood well enough to advance the field toward bottom-updesign for specific applications. Direct current (DC) measurements give information on the device performancesuch as sensitivity, selectivity and response time. Alternating current (AC) measurements are a lesser-usedapproach that can give the same information, but also allow the varying contributions from the bulk, surfacesand interfaces, grain boundaries, electrode contacts and even substrate to be quantified, whether we work withpolycrystalline materials or single-crystal structures such as nanowires and nanorods. With this technique it ispossible to extract fundamental information about intergranular potential energy barrier height, width and donorconcentration changes in different atmospheres and temperatures. The equivalent circuit method is the mostcommon method of relating the impedance data to the physical system. However, the main weakness of thismethod is that the ideal circuit elements used in the fitting can be connected in many different ways to fit thesame signal. To properly apply this technique, the model development should consider both the impedancemeasurement and the physical and chemical characteristics of the system being studied. This review presentsa detailed description of impedance spectroscopy techniques for fundamental analysis of materials behavior ingas sensing applications, including proper data interpretation and types of fitting models commonly used, toenable researchers to better apply these techniques toward understanding of their materials systems.Fil: Schipani, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Miller, D. R.. Ohio State University; Estados UnidosFil: Ponce, Miguel Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Aldao, Celso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Akbar, S. A.. Ohio State University; Estados UnidosFil: Morris, P. A.. Ohio State University; Estados UnidosAmerican Scientific Publishers2016-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/33388Ponce, Miguel Adolfo; Akbar, S. A.; Schipani, Federico; Aldao, Celso Manuel; Morris, P. A.; Miller, D. R.; et al.; Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review; American Scientific Publishers; Reviews in Advanced Sciences and Engineering; 5; 1; 1-3-2016; 86-1052157-9121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.aspbs.com/rase/contents_rase51.htminfo:eu-repo/semantics/altIdentifier/doi/10.1166/rase.2016.1109info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:30:30Zoai:ri.conicet.gov.ar:11336/33388instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:30:30.682CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review |
title |
Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review |
spellingShingle |
Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review Schipani, Federico Semiconductors Impedance Spectroscopy Capacitance Models Conduction Mechanisms Oxide-Based Gas Sensors |
title_short |
Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review |
title_full |
Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review |
title_fullStr |
Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review |
title_full_unstemmed |
Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review |
title_sort |
Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review |
dc.creator.none.fl_str_mv |
Schipani, Federico Miller, D. R. Ponce, Miguel Adolfo Aldao, Celso Manuel Akbar, S. A. Morris, P. A. |
author |
Schipani, Federico |
author_facet |
Schipani, Federico Miller, D. R. Ponce, Miguel Adolfo Aldao, Celso Manuel Akbar, S. A. Morris, P. A. |
author_role |
author |
author2 |
Miller, D. R. Ponce, Miguel Adolfo Aldao, Celso Manuel Akbar, S. A. Morris, P. A. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Semiconductors Impedance Spectroscopy Capacitance Models Conduction Mechanisms Oxide-Based Gas Sensors |
topic |
Semiconductors Impedance Spectroscopy Capacitance Models Conduction Mechanisms Oxide-Based Gas Sensors |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Impedance spectroscopy is essential in understanding the physical and chemical processes that affect theelectronic behavior of semiconducting metal oxide-based gas sensor materials, but is often overlooked oravoided by researchers because of the complexity of proper data interpretation. These metal oxide nanomaterialsare promising as resistive-type gas sensors because they have the potential to meet the critical need thathas developed for low-power, low-cost, portable gas sensors. However, the mechanisms that determine thesematerials? gas-sensing performance is still not understood well enough to advance the field toward bottom-updesign for specific applications. Direct current (DC) measurements give information on the device performancesuch as sensitivity, selectivity and response time. Alternating current (AC) measurements are a lesser-usedapproach that can give the same information, but also allow the varying contributions from the bulk, surfacesand interfaces, grain boundaries, electrode contacts and even substrate to be quantified, whether we work withpolycrystalline materials or single-crystal structures such as nanowires and nanorods. With this technique it ispossible to extract fundamental information about intergranular potential energy barrier height, width and donorconcentration changes in different atmospheres and temperatures. The equivalent circuit method is the mostcommon method of relating the impedance data to the physical system. However, the main weakness of thismethod is that the ideal circuit elements used in the fitting can be connected in many different ways to fit thesame signal. To properly apply this technique, the model development should consider both the impedancemeasurement and the physical and chemical characteristics of the system being studied. This review presentsa detailed description of impedance spectroscopy techniques for fundamental analysis of materials behavior ingas sensing applications, including proper data interpretation and types of fitting models commonly used, toenable researchers to better apply these techniques toward understanding of their materials systems. Fil: Schipani, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Miller, D. R.. Ohio State University; Estados Unidos Fil: Ponce, Miguel Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Aldao, Celso Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Akbar, S. A.. Ohio State University; Estados Unidos Fil: Morris, P. A.. Ohio State University; Estados Unidos |
description |
Impedance spectroscopy is essential in understanding the physical and chemical processes that affect theelectronic behavior of semiconducting metal oxide-based gas sensor materials, but is often overlooked oravoided by researchers because of the complexity of proper data interpretation. These metal oxide nanomaterialsare promising as resistive-type gas sensors because they have the potential to meet the critical need thathas developed for low-power, low-cost, portable gas sensors. However, the mechanisms that determine thesematerials? gas-sensing performance is still not understood well enough to advance the field toward bottom-updesign for specific applications. Direct current (DC) measurements give information on the device performancesuch as sensitivity, selectivity and response time. Alternating current (AC) measurements are a lesser-usedapproach that can give the same information, but also allow the varying contributions from the bulk, surfacesand interfaces, grain boundaries, electrode contacts and even substrate to be quantified, whether we work withpolycrystalline materials or single-crystal structures such as nanowires and nanorods. With this technique it ispossible to extract fundamental information about intergranular potential energy barrier height, width and donorconcentration changes in different atmospheres and temperatures. The equivalent circuit method is the mostcommon method of relating the impedance data to the physical system. However, the main weakness of thismethod is that the ideal circuit elements used in the fitting can be connected in many different ways to fit thesame signal. To properly apply this technique, the model development should consider both the impedancemeasurement and the physical and chemical characteristics of the system being studied. This review presentsa detailed description of impedance spectroscopy techniques for fundamental analysis of materials behavior ingas sensing applications, including proper data interpretation and types of fitting models commonly used, toenable researchers to better apply these techniques toward understanding of their materials systems. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/33388 Ponce, Miguel Adolfo; Akbar, S. A.; Schipani, Federico; Aldao, Celso Manuel; Morris, P. A.; Miller, D. R.; et al.; Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review; American Scientific Publishers; Reviews in Advanced Sciences and Engineering; 5; 1; 1-3-2016; 86-105 2157-9121 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/33388 |
identifier_str_mv |
Ponce, Miguel Adolfo; Akbar, S. A.; Schipani, Federico; Aldao, Celso Manuel; Morris, P. A.; Miller, D. R.; et al.; Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review; American Scientific Publishers; Reviews in Advanced Sciences and Engineering; 5; 1; 1-3-2016; 86-105 2157-9121 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.aspbs.com/rase/contents_rase51.htm info:eu-repo/semantics/altIdentifier/doi/10.1166/rase.2016.1109 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Scientific Publishers |
publisher.none.fl_str_mv |
American Scientific Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082782621597696 |
score |
13.22299 |