Uncovering distinct protein-network topologies in heterogeneous cell populations

Autores
Wieczorek, Jakob; Malik Sheriff, Rahuman S.; Fermin, Yessica; Grecco, Hernan Edgardo; Zamir, Eli; Ickstadt, Katja
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: Cell biology research is fundamentally limited by the number of intracellular components, particularly proteins, that can be co-measured in the same cell. Therefore, cell-to-cell heterogeneity in unmeasured proteins can lead to completely different observed relations between the same measured proteins. Attempts to infer such relations in a heterogeneous cell population can yield uninformative average relations if only one underlying biochemical network is assumed. To address this, we developed a method that recursively couples an iterative unmixing process with a Bayesian analysis of each unmixed subpopulation. Results: Our approach enables to identify the number of distinct cell subpopulations, unmix their corresponding observations and resolve the network structure of each subpopulation. Using simulations of the MAPK pathway upon EGF and NGF stimulations we assess the performance of the method. We demonstrate that the presented method can identify better than clustering approaches the number of subpopulations within a mixture of observations, thus resolving correctly the statistical relations between the proteins. Conclusions: Coupling the unmixing of multiplexed observations with the inference of statistical relations between the measured parameters is essential for the success of both of these processes. Here we present a conceptual and algorithmic solution to achieve such coupling and hence to analyze data obtained from a natural mixture of cell populations. As the technologies and necessity for multiplexed measurements are rising in the systems biology era, this work addresses an important current challenge in the analysis of the derived data.
Fil: Wieczorek, Jakob. Universitat Dortmund; Alemania
Fil: Malik Sheriff, Rahuman S.. Institut Max Planck fur Molekulare Physiologie; Alemania. Imperial College London; Reino Unido. European Bioinformatics Institute. European Molecular Biology Laboratory; Reino Unido
Fil: Fermin, Yessica. Universitat Dortmund; Alemania
Fil: Grecco, Hernan Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Zamir, Eli. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Ickstadt, Katja. Universitat Dortmund; Alemania
Materia
BAYESIAN ANALYSIS
CLUSTER ANALYSIS
INTERCELLULAR VARIABILITY
NETWORK ANALYSIS
PROTEIN NETWORKS
REVERSE ENGINEERING
UNMIXING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/46228

id CONICETDig_d12de157a775ca517faf9725334c824a
oai_identifier_str oai:ri.conicet.gov.ar:11336/46228
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Uncovering distinct protein-network topologies in heterogeneous cell populationsWieczorek, JakobMalik Sheriff, Rahuman S.Fermin, YessicaGrecco, Hernan EdgardoZamir, EliIckstadt, KatjaBAYESIAN ANALYSISCLUSTER ANALYSISINTERCELLULAR VARIABILITYNETWORK ANALYSISPROTEIN NETWORKSREVERSE ENGINEERINGUNMIXINGhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Background: Cell biology research is fundamentally limited by the number of intracellular components, particularly proteins, that can be co-measured in the same cell. Therefore, cell-to-cell heterogeneity in unmeasured proteins can lead to completely different observed relations between the same measured proteins. Attempts to infer such relations in a heterogeneous cell population can yield uninformative average relations if only one underlying biochemical network is assumed. To address this, we developed a method that recursively couples an iterative unmixing process with a Bayesian analysis of each unmixed subpopulation. Results: Our approach enables to identify the number of distinct cell subpopulations, unmix their corresponding observations and resolve the network structure of each subpopulation. Using simulations of the MAPK pathway upon EGF and NGF stimulations we assess the performance of the method. We demonstrate that the presented method can identify better than clustering approaches the number of subpopulations within a mixture of observations, thus resolving correctly the statistical relations between the proteins. Conclusions: Coupling the unmixing of multiplexed observations with the inference of statistical relations between the measured parameters is essential for the success of both of these processes. Here we present a conceptual and algorithmic solution to achieve such coupling and hence to analyze data obtained from a natural mixture of cell populations. As the technologies and necessity for multiplexed measurements are rising in the systems biology era, this work addresses an important current challenge in the analysis of the derived data.Fil: Wieczorek, Jakob. Universitat Dortmund; AlemaniaFil: Malik Sheriff, Rahuman S.. Institut Max Planck fur Molekulare Physiologie; Alemania. Imperial College London; Reino Unido. European Bioinformatics Institute. European Molecular Biology Laboratory; Reino UnidoFil: Fermin, Yessica. Universitat Dortmund; AlemaniaFil: Grecco, Hernan Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Institut Max Planck fur Molekulare Physiologie; AlemaniaFil: Zamir, Eli. Institut Max Planck fur Molekulare Physiologie; AlemaniaFil: Ickstadt, Katja. Universitat Dortmund; AlemaniaBioMed Central2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46228Wieczorek, Jakob; Malik Sheriff, Rahuman S.; Fermin, Yessica; Grecco, Hernan Edgardo; Zamir, Eli; et al.; Uncovering distinct protein-network topologies in heterogeneous cell populations; BioMed Central; Bmc Systems Biology; 9; 24; 6-2015; 1-121752-0509CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1186/s12918-015-0170-2info:eu-repo/semantics/altIdentifier/url/https://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-015-0170-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:12:04Zoai:ri.conicet.gov.ar:11336/46228instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:12:04.347CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Uncovering distinct protein-network topologies in heterogeneous cell populations
title Uncovering distinct protein-network topologies in heterogeneous cell populations
spellingShingle Uncovering distinct protein-network topologies in heterogeneous cell populations
Wieczorek, Jakob
BAYESIAN ANALYSIS
CLUSTER ANALYSIS
INTERCELLULAR VARIABILITY
NETWORK ANALYSIS
PROTEIN NETWORKS
REVERSE ENGINEERING
UNMIXING
title_short Uncovering distinct protein-network topologies in heterogeneous cell populations
title_full Uncovering distinct protein-network topologies in heterogeneous cell populations
title_fullStr Uncovering distinct protein-network topologies in heterogeneous cell populations
title_full_unstemmed Uncovering distinct protein-network topologies in heterogeneous cell populations
title_sort Uncovering distinct protein-network topologies in heterogeneous cell populations
dc.creator.none.fl_str_mv Wieczorek, Jakob
Malik Sheriff, Rahuman S.
Fermin, Yessica
Grecco, Hernan Edgardo
Zamir, Eli
Ickstadt, Katja
author Wieczorek, Jakob
author_facet Wieczorek, Jakob
Malik Sheriff, Rahuman S.
Fermin, Yessica
Grecco, Hernan Edgardo
Zamir, Eli
Ickstadt, Katja
author_role author
author2 Malik Sheriff, Rahuman S.
Fermin, Yessica
Grecco, Hernan Edgardo
Zamir, Eli
Ickstadt, Katja
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv BAYESIAN ANALYSIS
CLUSTER ANALYSIS
INTERCELLULAR VARIABILITY
NETWORK ANALYSIS
PROTEIN NETWORKS
REVERSE ENGINEERING
UNMIXING
topic BAYESIAN ANALYSIS
CLUSTER ANALYSIS
INTERCELLULAR VARIABILITY
NETWORK ANALYSIS
PROTEIN NETWORKS
REVERSE ENGINEERING
UNMIXING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Background: Cell biology research is fundamentally limited by the number of intracellular components, particularly proteins, that can be co-measured in the same cell. Therefore, cell-to-cell heterogeneity in unmeasured proteins can lead to completely different observed relations between the same measured proteins. Attempts to infer such relations in a heterogeneous cell population can yield uninformative average relations if only one underlying biochemical network is assumed. To address this, we developed a method that recursively couples an iterative unmixing process with a Bayesian analysis of each unmixed subpopulation. Results: Our approach enables to identify the number of distinct cell subpopulations, unmix their corresponding observations and resolve the network structure of each subpopulation. Using simulations of the MAPK pathway upon EGF and NGF stimulations we assess the performance of the method. We demonstrate that the presented method can identify better than clustering approaches the number of subpopulations within a mixture of observations, thus resolving correctly the statistical relations between the proteins. Conclusions: Coupling the unmixing of multiplexed observations with the inference of statistical relations between the measured parameters is essential for the success of both of these processes. Here we present a conceptual and algorithmic solution to achieve such coupling and hence to analyze data obtained from a natural mixture of cell populations. As the technologies and necessity for multiplexed measurements are rising in the systems biology era, this work addresses an important current challenge in the analysis of the derived data.
Fil: Wieczorek, Jakob. Universitat Dortmund; Alemania
Fil: Malik Sheriff, Rahuman S.. Institut Max Planck fur Molekulare Physiologie; Alemania. Imperial College London; Reino Unido. European Bioinformatics Institute. European Molecular Biology Laboratory; Reino Unido
Fil: Fermin, Yessica. Universitat Dortmund; Alemania
Fil: Grecco, Hernan Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Zamir, Eli. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Ickstadt, Katja. Universitat Dortmund; Alemania
description Background: Cell biology research is fundamentally limited by the number of intracellular components, particularly proteins, that can be co-measured in the same cell. Therefore, cell-to-cell heterogeneity in unmeasured proteins can lead to completely different observed relations between the same measured proteins. Attempts to infer such relations in a heterogeneous cell population can yield uninformative average relations if only one underlying biochemical network is assumed. To address this, we developed a method that recursively couples an iterative unmixing process with a Bayesian analysis of each unmixed subpopulation. Results: Our approach enables to identify the number of distinct cell subpopulations, unmix their corresponding observations and resolve the network structure of each subpopulation. Using simulations of the MAPK pathway upon EGF and NGF stimulations we assess the performance of the method. We demonstrate that the presented method can identify better than clustering approaches the number of subpopulations within a mixture of observations, thus resolving correctly the statistical relations between the proteins. Conclusions: Coupling the unmixing of multiplexed observations with the inference of statistical relations between the measured parameters is essential for the success of both of these processes. Here we present a conceptual and algorithmic solution to achieve such coupling and hence to analyze data obtained from a natural mixture of cell populations. As the technologies and necessity for multiplexed measurements are rising in the systems biology era, this work addresses an important current challenge in the analysis of the derived data.
publishDate 2015
dc.date.none.fl_str_mv 2015-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/46228
Wieczorek, Jakob; Malik Sheriff, Rahuman S.; Fermin, Yessica; Grecco, Hernan Edgardo; Zamir, Eli; et al.; Uncovering distinct protein-network topologies in heterogeneous cell populations; BioMed Central; Bmc Systems Biology; 9; 24; 6-2015; 1-12
1752-0509
CONICET Digital
CONICET
url http://hdl.handle.net/11336/46228
identifier_str_mv Wieczorek, Jakob; Malik Sheriff, Rahuman S.; Fermin, Yessica; Grecco, Hernan Edgardo; Zamir, Eli; et al.; Uncovering distinct protein-network topologies in heterogeneous cell populations; BioMed Central; Bmc Systems Biology; 9; 24; 6-2015; 1-12
1752-0509
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1186/s12918-015-0170-2
info:eu-repo/semantics/altIdentifier/url/https://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-015-0170-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv BioMed Central
publisher.none.fl_str_mv BioMed Central
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781507952181248
score 12.982451