Uncovering distinct protein-network topologies in heterogeneous cell populations
- Autores
- Wieczorek, Jakob; Malik Sheriff, Rahuman S.; Fermin, Yessica; Grecco, Hernan Edgardo; Zamir, Eli; Ickstadt, Katja
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Cell biology research is fundamentally limited by the number of intracellular components, particularly proteins, that can be co-measured in the same cell. Therefore, cell-to-cell heterogeneity in unmeasured proteins can lead to completely different observed relations between the same measured proteins. Attempts to infer such relations in a heterogeneous cell population can yield uninformative average relations if only one underlying biochemical network is assumed. To address this, we developed a method that recursively couples an iterative unmixing process with a Bayesian analysis of each unmixed subpopulation. Results: Our approach enables to identify the number of distinct cell subpopulations, unmix their corresponding observations and resolve the network structure of each subpopulation. Using simulations of the MAPK pathway upon EGF and NGF stimulations we assess the performance of the method. We demonstrate that the presented method can identify better than clustering approaches the number of subpopulations within a mixture of observations, thus resolving correctly the statistical relations between the proteins. Conclusions: Coupling the unmixing of multiplexed observations with the inference of statistical relations between the measured parameters is essential for the success of both of these processes. Here we present a conceptual and algorithmic solution to achieve such coupling and hence to analyze data obtained from a natural mixture of cell populations. As the technologies and necessity for multiplexed measurements are rising in the systems biology era, this work addresses an important current challenge in the analysis of the derived data.
Fil: Wieczorek, Jakob. Universitat Dortmund; Alemania
Fil: Malik Sheriff, Rahuman S.. Institut Max Planck fur Molekulare Physiologie; Alemania. Imperial College London; Reino Unido. European Bioinformatics Institute. European Molecular Biology Laboratory; Reino Unido
Fil: Fermin, Yessica. Universitat Dortmund; Alemania
Fil: Grecco, Hernan Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Zamir, Eli. Institut Max Planck fur Molekulare Physiologie; Alemania
Fil: Ickstadt, Katja. Universitat Dortmund; Alemania - Materia
-
BAYESIAN ANALYSIS
CLUSTER ANALYSIS
INTERCELLULAR VARIABILITY
NETWORK ANALYSIS
PROTEIN NETWORKS
REVERSE ENGINEERING
UNMIXING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/46228
Ver los metadatos del registro completo
| id |
CONICETDig_d12de157a775ca517faf9725334c824a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/46228 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Uncovering distinct protein-network topologies in heterogeneous cell populationsWieczorek, JakobMalik Sheriff, Rahuman S.Fermin, YessicaGrecco, Hernan EdgardoZamir, EliIckstadt, KatjaBAYESIAN ANALYSISCLUSTER ANALYSISINTERCELLULAR VARIABILITYNETWORK ANALYSISPROTEIN NETWORKSREVERSE ENGINEERINGUNMIXINGhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Background: Cell biology research is fundamentally limited by the number of intracellular components, particularly proteins, that can be co-measured in the same cell. Therefore, cell-to-cell heterogeneity in unmeasured proteins can lead to completely different observed relations between the same measured proteins. Attempts to infer such relations in a heterogeneous cell population can yield uninformative average relations if only one underlying biochemical network is assumed. To address this, we developed a method that recursively couples an iterative unmixing process with a Bayesian analysis of each unmixed subpopulation. Results: Our approach enables to identify the number of distinct cell subpopulations, unmix their corresponding observations and resolve the network structure of each subpopulation. Using simulations of the MAPK pathway upon EGF and NGF stimulations we assess the performance of the method. We demonstrate that the presented method can identify better than clustering approaches the number of subpopulations within a mixture of observations, thus resolving correctly the statistical relations between the proteins. Conclusions: Coupling the unmixing of multiplexed observations with the inference of statistical relations between the measured parameters is essential for the success of both of these processes. Here we present a conceptual and algorithmic solution to achieve such coupling and hence to analyze data obtained from a natural mixture of cell populations. As the technologies and necessity for multiplexed measurements are rising in the systems biology era, this work addresses an important current challenge in the analysis of the derived data.Fil: Wieczorek, Jakob. Universitat Dortmund; AlemaniaFil: Malik Sheriff, Rahuman S.. Institut Max Planck fur Molekulare Physiologie; Alemania. Imperial College London; Reino Unido. European Bioinformatics Institute. European Molecular Biology Laboratory; Reino UnidoFil: Fermin, Yessica. Universitat Dortmund; AlemaniaFil: Grecco, Hernan Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Institut Max Planck fur Molekulare Physiologie; AlemaniaFil: Zamir, Eli. Institut Max Planck fur Molekulare Physiologie; AlemaniaFil: Ickstadt, Katja. Universitat Dortmund; AlemaniaBioMed Central2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46228Wieczorek, Jakob; Malik Sheriff, Rahuman S.; Fermin, Yessica; Grecco, Hernan Edgardo; Zamir, Eli; et al.; Uncovering distinct protein-network topologies in heterogeneous cell populations; BioMed Central; Bmc Systems Biology; 9; 24; 6-2015; 1-121752-0509CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1186/s12918-015-0170-2info:eu-repo/semantics/altIdentifier/url/https://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-015-0170-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:12:04Zoai:ri.conicet.gov.ar:11336/46228instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:12:04.347CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Uncovering distinct protein-network topologies in heterogeneous cell populations |
| title |
Uncovering distinct protein-network topologies in heterogeneous cell populations |
| spellingShingle |
Uncovering distinct protein-network topologies in heterogeneous cell populations Wieczorek, Jakob BAYESIAN ANALYSIS CLUSTER ANALYSIS INTERCELLULAR VARIABILITY NETWORK ANALYSIS PROTEIN NETWORKS REVERSE ENGINEERING UNMIXING |
| title_short |
Uncovering distinct protein-network topologies in heterogeneous cell populations |
| title_full |
Uncovering distinct protein-network topologies in heterogeneous cell populations |
| title_fullStr |
Uncovering distinct protein-network topologies in heterogeneous cell populations |
| title_full_unstemmed |
Uncovering distinct protein-network topologies in heterogeneous cell populations |
| title_sort |
Uncovering distinct protein-network topologies in heterogeneous cell populations |
| dc.creator.none.fl_str_mv |
Wieczorek, Jakob Malik Sheriff, Rahuman S. Fermin, Yessica Grecco, Hernan Edgardo Zamir, Eli Ickstadt, Katja |
| author |
Wieczorek, Jakob |
| author_facet |
Wieczorek, Jakob Malik Sheriff, Rahuman S. Fermin, Yessica Grecco, Hernan Edgardo Zamir, Eli Ickstadt, Katja |
| author_role |
author |
| author2 |
Malik Sheriff, Rahuman S. Fermin, Yessica Grecco, Hernan Edgardo Zamir, Eli Ickstadt, Katja |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
BAYESIAN ANALYSIS CLUSTER ANALYSIS INTERCELLULAR VARIABILITY NETWORK ANALYSIS PROTEIN NETWORKS REVERSE ENGINEERING UNMIXING |
| topic |
BAYESIAN ANALYSIS CLUSTER ANALYSIS INTERCELLULAR VARIABILITY NETWORK ANALYSIS PROTEIN NETWORKS REVERSE ENGINEERING UNMIXING |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Background: Cell biology research is fundamentally limited by the number of intracellular components, particularly proteins, that can be co-measured in the same cell. Therefore, cell-to-cell heterogeneity in unmeasured proteins can lead to completely different observed relations between the same measured proteins. Attempts to infer such relations in a heterogeneous cell population can yield uninformative average relations if only one underlying biochemical network is assumed. To address this, we developed a method that recursively couples an iterative unmixing process with a Bayesian analysis of each unmixed subpopulation. Results: Our approach enables to identify the number of distinct cell subpopulations, unmix their corresponding observations and resolve the network structure of each subpopulation. Using simulations of the MAPK pathway upon EGF and NGF stimulations we assess the performance of the method. We demonstrate that the presented method can identify better than clustering approaches the number of subpopulations within a mixture of observations, thus resolving correctly the statistical relations between the proteins. Conclusions: Coupling the unmixing of multiplexed observations with the inference of statistical relations between the measured parameters is essential for the success of both of these processes. Here we present a conceptual and algorithmic solution to achieve such coupling and hence to analyze data obtained from a natural mixture of cell populations. As the technologies and necessity for multiplexed measurements are rising in the systems biology era, this work addresses an important current challenge in the analysis of the derived data. Fil: Wieczorek, Jakob. Universitat Dortmund; Alemania Fil: Malik Sheriff, Rahuman S.. Institut Max Planck fur Molekulare Physiologie; Alemania. Imperial College London; Reino Unido. European Bioinformatics Institute. European Molecular Biology Laboratory; Reino Unido Fil: Fermin, Yessica. Universitat Dortmund; Alemania Fil: Grecco, Hernan Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Institut Max Planck fur Molekulare Physiologie; Alemania Fil: Zamir, Eli. Institut Max Planck fur Molekulare Physiologie; Alemania Fil: Ickstadt, Katja. Universitat Dortmund; Alemania |
| description |
Background: Cell biology research is fundamentally limited by the number of intracellular components, particularly proteins, that can be co-measured in the same cell. Therefore, cell-to-cell heterogeneity in unmeasured proteins can lead to completely different observed relations between the same measured proteins. Attempts to infer such relations in a heterogeneous cell population can yield uninformative average relations if only one underlying biochemical network is assumed. To address this, we developed a method that recursively couples an iterative unmixing process with a Bayesian analysis of each unmixed subpopulation. Results: Our approach enables to identify the number of distinct cell subpopulations, unmix their corresponding observations and resolve the network structure of each subpopulation. Using simulations of the MAPK pathway upon EGF and NGF stimulations we assess the performance of the method. We demonstrate that the presented method can identify better than clustering approaches the number of subpopulations within a mixture of observations, thus resolving correctly the statistical relations between the proteins. Conclusions: Coupling the unmixing of multiplexed observations with the inference of statistical relations between the measured parameters is essential for the success of both of these processes. Here we present a conceptual and algorithmic solution to achieve such coupling and hence to analyze data obtained from a natural mixture of cell populations. As the technologies and necessity for multiplexed measurements are rising in the systems biology era, this work addresses an important current challenge in the analysis of the derived data. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/46228 Wieczorek, Jakob; Malik Sheriff, Rahuman S.; Fermin, Yessica; Grecco, Hernan Edgardo; Zamir, Eli; et al.; Uncovering distinct protein-network topologies in heterogeneous cell populations; BioMed Central; Bmc Systems Biology; 9; 24; 6-2015; 1-12 1752-0509 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/46228 |
| identifier_str_mv |
Wieczorek, Jakob; Malik Sheriff, Rahuman S.; Fermin, Yessica; Grecco, Hernan Edgardo; Zamir, Eli; et al.; Uncovering distinct protein-network topologies in heterogeneous cell populations; BioMed Central; Bmc Systems Biology; 9; 24; 6-2015; 1-12 1752-0509 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1186/s12918-015-0170-2 info:eu-repo/semantics/altIdentifier/url/https://bmcsystbiol.biomedcentral.com/articles/10.1186/s12918-015-0170-2 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
BioMed Central |
| publisher.none.fl_str_mv |
BioMed Central |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781507952181248 |
| score |
12.982451 |