PEACH: Predicting Frost Events in Peach Orchards Using IoT Technology

Autores
Watteyne, Thomas; Diedrichs, Ana Laura; Brun Laguna, Keoma; Chaar, Javier Emilio; Dujovne, Diego; Taffernaberry, Juan Carlos; Mercado, Gustavo Ariel
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In 2013, 85% of the peach production in the Mendoza region (Argentina) was lost because of frost. In a couple of hours, farmers can lose everything. Handling a frost event is possible, but it is hard to predict when it is going to happen. The goal of the PEACH project is to predict frost events by analyzing measurements from sensors deployed around an orchard. This article provides an in-depth description of a complete solution we designed and deployed: the low-power wireless network and the back-end system. The low-power wireless network is composed entirely of commercial o-the-shelf devices. We develop a methodology for deploying the network and present the open-source tools to assist with the deployment and to monitor the network. The deployed low-power wireless mesh network is 100% reliable, with end-to-end latency below 2 s, and over 3 years of battery lifetime. This article discusses how the technology used is the right one for precision agriculture applications.
Fil: Watteyne, Thomas. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Diedrichs, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina
Fil: Brun Laguna, Keoma. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Chaar, Javier Emilio. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-san Juan. Estación Experimental Agropecuaria Junin; Argentina
Fil: Dujovne, Diego. Universidad Diego Portales; Chile
Fil: Taffernaberry, Juan Carlos. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina
Fil: Mercado, Gustavo Ariel. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina
Materia
Smart Agriculture
Precision Agriculture
Deployment
SmartMesh IP
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100758

id CONICETDig_cf1ec287216cacbc33224cc06832584a
oai_identifier_str oai:ri.conicet.gov.ar:11336/100758
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling PEACH: Predicting Frost Events in Peach Orchards Using IoT TechnologyWatteyne, ThomasDiedrichs, Ana LauraBrun Laguna, KeomaChaar, Javier EmilioDujovne, DiegoTaffernaberry, Juan CarlosMercado, Gustavo ArielSmart AgriculturePrecision AgricultureDeploymentSmartMesh IPhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2https://purl.org/becyt/ford/4.5https://purl.org/becyt/ford/4In 2013, 85% of the peach production in the Mendoza region (Argentina) was lost because of frost. In a couple of hours, farmers can lose everything. Handling a frost event is possible, but it is hard to predict when it is going to happen. The goal of the PEACH project is to predict frost events by analyzing measurements from sensors deployed around an orchard. This article provides an in-depth description of a complete solution we designed and deployed: the low-power wireless network and the back-end system. The low-power wireless network is composed entirely of commercial o-the-shelf devices. We develop a methodology for deploying the network and present the open-source tools to assist with the deployment and to monitor the network. The deployed low-power wireless mesh network is 100% reliable, with end-to-end latency below 2 s, and over 3 years of battery lifetime. This article discusses how the technology used is the right one for precision agriculture applications.Fil: Watteyne, Thomas. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Diedrichs, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; ArgentinaFil: Brun Laguna, Keoma. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Chaar, Javier Emilio. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-san Juan. Estación Experimental Agropecuaria Junin; ArgentinaFil: Dujovne, Diego. Universidad Diego Portales; ChileFil: Taffernaberry, Juan Carlos. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; ArgentinaFil: Mercado, Gustavo Ariel. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; ArgentinaEAI Endorsed Transactions2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100758Watteyne, Thomas; Diedrichs, Ana Laura; Brun Laguna, Keoma; Chaar, Javier Emilio; Dujovne, Diego; et al.; PEACH: Predicting Frost Events in Peach Orchards Using IoT Technology; EAI Endorsed Transactions; EAI Endorsed Transactions on Internet of Things; 2; 5; 12-2016; 1-122414-1399CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://eudl.eu/doi/10.4108/eai.1-12-2016.151711info:eu-repo/semantics/altIdentifier/doi/10.4108/eai.1-12-2016.151711info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:54Zoai:ri.conicet.gov.ar:11336/100758instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:54.438CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv PEACH: Predicting Frost Events in Peach Orchards Using IoT Technology
title PEACH: Predicting Frost Events in Peach Orchards Using IoT Technology
spellingShingle PEACH: Predicting Frost Events in Peach Orchards Using IoT Technology
Watteyne, Thomas
Smart Agriculture
Precision Agriculture
Deployment
SmartMesh IP
title_short PEACH: Predicting Frost Events in Peach Orchards Using IoT Technology
title_full PEACH: Predicting Frost Events in Peach Orchards Using IoT Technology
title_fullStr PEACH: Predicting Frost Events in Peach Orchards Using IoT Technology
title_full_unstemmed PEACH: Predicting Frost Events in Peach Orchards Using IoT Technology
title_sort PEACH: Predicting Frost Events in Peach Orchards Using IoT Technology
dc.creator.none.fl_str_mv Watteyne, Thomas
Diedrichs, Ana Laura
Brun Laguna, Keoma
Chaar, Javier Emilio
Dujovne, Diego
Taffernaberry, Juan Carlos
Mercado, Gustavo Ariel
author Watteyne, Thomas
author_facet Watteyne, Thomas
Diedrichs, Ana Laura
Brun Laguna, Keoma
Chaar, Javier Emilio
Dujovne, Diego
Taffernaberry, Juan Carlos
Mercado, Gustavo Ariel
author_role author
author2 Diedrichs, Ana Laura
Brun Laguna, Keoma
Chaar, Javier Emilio
Dujovne, Diego
Taffernaberry, Juan Carlos
Mercado, Gustavo Ariel
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Smart Agriculture
Precision Agriculture
Deployment
SmartMesh IP
topic Smart Agriculture
Precision Agriculture
Deployment
SmartMesh IP
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/4.5
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv In 2013, 85% of the peach production in the Mendoza region (Argentina) was lost because of frost. In a couple of hours, farmers can lose everything. Handling a frost event is possible, but it is hard to predict when it is going to happen. The goal of the PEACH project is to predict frost events by analyzing measurements from sensors deployed around an orchard. This article provides an in-depth description of a complete solution we designed and deployed: the low-power wireless network and the back-end system. The low-power wireless network is composed entirely of commercial o-the-shelf devices. We develop a methodology for deploying the network and present the open-source tools to assist with the deployment and to monitor the network. The deployed low-power wireless mesh network is 100% reliable, with end-to-end latency below 2 s, and over 3 years of battery lifetime. This article discusses how the technology used is the right one for precision agriculture applications.
Fil: Watteyne, Thomas. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Diedrichs, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina
Fil: Brun Laguna, Keoma. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Chaar, Javier Emilio. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Mendoza-san Juan. Estación Experimental Agropecuaria Junin; Argentina
Fil: Dujovne, Diego. Universidad Diego Portales; Chile
Fil: Taffernaberry, Juan Carlos. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina
Fil: Mercado, Gustavo Ariel. Universidad Tecnológica Nacional. Facultad Regional de Mendoza; Argentina
description In 2013, 85% of the peach production in the Mendoza region (Argentina) was lost because of frost. In a couple of hours, farmers can lose everything. Handling a frost event is possible, but it is hard to predict when it is going to happen. The goal of the PEACH project is to predict frost events by analyzing measurements from sensors deployed around an orchard. This article provides an in-depth description of a complete solution we designed and deployed: the low-power wireless network and the back-end system. The low-power wireless network is composed entirely of commercial o-the-shelf devices. We develop a methodology for deploying the network and present the open-source tools to assist with the deployment and to monitor the network. The deployed low-power wireless mesh network is 100% reliable, with end-to-end latency below 2 s, and over 3 years of battery lifetime. This article discusses how the technology used is the right one for precision agriculture applications.
publishDate 2016
dc.date.none.fl_str_mv 2016-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100758
Watteyne, Thomas; Diedrichs, Ana Laura; Brun Laguna, Keoma; Chaar, Javier Emilio; Dujovne, Diego; et al.; PEACH: Predicting Frost Events in Peach Orchards Using IoT Technology; EAI Endorsed Transactions; EAI Endorsed Transactions on Internet of Things; 2; 5; 12-2016; 1-12
2414-1399
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100758
identifier_str_mv Watteyne, Thomas; Diedrichs, Ana Laura; Brun Laguna, Keoma; Chaar, Javier Emilio; Dujovne, Diego; et al.; PEACH: Predicting Frost Events in Peach Orchards Using IoT Technology; EAI Endorsed Transactions; EAI Endorsed Transactions on Internet of Things; 2; 5; 12-2016; 1-12
2414-1399
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://eudl.eu/doi/10.4108/eai.1-12-2016.151711
info:eu-repo/semantics/altIdentifier/doi/10.4108/eai.1-12-2016.151711
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EAI Endorsed Transactions
publisher.none.fl_str_mv EAI Endorsed Transactions
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613381732958208
score 13.070432