Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons

Autores
Yannarelli, Gustavo Gabriel; Gallego, Susana Mabel; Tomaro, Maria Lujan
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Ultraviolet-B (UV-B) radiation produces oxidative stress by increasing active oxygen species (AOS) such as singlet oxygen, superoxide anion, hydrogen peroxide and hydroxyl radicals. Recent studies confirm that hydrogen peroxide is a signaling molecule that mediates responses to abiotic and biotic stresses in plants. Peroxidases are a variety of enzymes that catalyze the breakdown of H2O2 with the concomitant dependent oxidation of a wide variety of substrates. The behavior of activities and isoforms of catalase (CAT), ascorbate peroxidase (APX) and peroxidases (POD) was investigated in the cotyledons of Helianthus annuus L. subjected to UV-B radiation. Under UV-B treatments (15 and 30 kJm−2) and later recovery in darkness or in white light, APX activity remains unaltered. Compared to control, CAT and guaiacol peroxidase (GPX) activities were increased at the two UV-B doses and after dark recuperation, but both enzymes returned to controls values when plants were treated with 30 kJm−2 UV-B radiation and recovered under white light. Control sunflower cotyledons had one CAT and four APX isoforms which were altered by UV-B irradiation and recuperation treatments. In control cotyledons were observed two isoforms of POD (POD1 and POD2). Only POD2 activity was increased by 15 kJm−2 and decreased by 30 kJm−2 UV-B radiation, but both the POD activities increased when plants were recovered in darkness or in white light. We observed a new POD isoform (POD3) after dark recuperation when plants were treated with 30 kJm−2 UV-B dose. Chromatography in a Mono Q column showed three á-naphthol activity peaks corresponding to the three isoforms observed in stained gels, but only POD3 had activity when guaiacol was used as substrate. On the other hand, treatments with different hydrogen peroxide concentrations increased the activity of the two POD isoforms (POD1 and POD2) observed in control cotyledons, but POD3 was absent. Sunflower plants acclimatize themselves to UV-B radiation by induction of different isoforms of POD. Catalase, APX, POD1 and POD2 work directly as oxygen species scavenger and POD3 could play a role in polyphenols metabolism, increasing the antioxidant capacity or cross-linking UV-absorbing phenolics.
Fil: Yannarelli, Gustavo Gabriel. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gallego, Susana Mabel. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentina
Fil: Tomaro, Maria Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; Argentina
Materia
Ascorbate peroxidase
Catalase
Helianthus annuus L
Hydrogen peroxide
Peroxidase
UV-B radiatio
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/241792

id CONICETDig_ceca77b55de7fb9ece0ffb0d08849bf3
oai_identifier_str oai:ri.conicet.gov.ar:11336/241792
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledonsYannarelli, Gustavo GabrielGallego, Susana MabelTomaro, Maria LujanAscorbate peroxidaseCatalaseHelianthus annuus LHydrogen peroxidePeroxidaseUV-B radiatiohttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Ultraviolet-B (UV-B) radiation produces oxidative stress by increasing active oxygen species (AOS) such as singlet oxygen, superoxide anion, hydrogen peroxide and hydroxyl radicals. Recent studies confirm that hydrogen peroxide is a signaling molecule that mediates responses to abiotic and biotic stresses in plants. Peroxidases are a variety of enzymes that catalyze the breakdown of H2O2 with the concomitant dependent oxidation of a wide variety of substrates. The behavior of activities and isoforms of catalase (CAT), ascorbate peroxidase (APX) and peroxidases (POD) was investigated in the cotyledons of Helianthus annuus L. subjected to UV-B radiation. Under UV-B treatments (15 and 30 kJm−2) and later recovery in darkness or in white light, APX activity remains unaltered. Compared to control, CAT and guaiacol peroxidase (GPX) activities were increased at the two UV-B doses and after dark recuperation, but both enzymes returned to controls values when plants were treated with 30 kJm−2 UV-B radiation and recovered under white light. Control sunflower cotyledons had one CAT and four APX isoforms which were altered by UV-B irradiation and recuperation treatments. In control cotyledons were observed two isoforms of POD (POD1 and POD2). Only POD2 activity was increased by 15 kJm−2 and decreased by 30 kJm−2 UV-B radiation, but both the POD activities increased when plants were recovered in darkness or in white light. We observed a new POD isoform (POD3) after dark recuperation when plants were treated with 30 kJm−2 UV-B dose. Chromatography in a Mono Q column showed three á-naphthol activity peaks corresponding to the three isoforms observed in stained gels, but only POD3 had activity when guaiacol was used as substrate. On the other hand, treatments with different hydrogen peroxide concentrations increased the activity of the two POD isoforms (POD1 and POD2) observed in control cotyledons, but POD3 was absent. Sunflower plants acclimatize themselves to UV-B radiation by induction of different isoforms of POD. Catalase, APX, POD1 and POD2 work directly as oxygen species scavenger and POD3 could play a role in polyphenols metabolism, increasing the antioxidant capacity or cross-linking UV-absorbing phenolics.Fil: Yannarelli, Gustavo Gabriel. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gallego, Susana Mabel. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Tomaro, Maria Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; ArgentinaPergamon-Elsevier Science Ltd2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241792Yannarelli, Gustavo Gabriel; Gallego, Susana Mabel; Tomaro, Maria Lujan; Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons; Pergamon-Elsevier Science Ltd; Environmental and Experimental Botany; 56; 2; 12-2006; 174-1810098-8472CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098847205000286info:eu-repo/semantics/altIdentifier/doi/10.1016/j.envexpbot.2005.01.015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:12:19Zoai:ri.conicet.gov.ar:11336/241792instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:12:19.711CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons
title Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons
spellingShingle Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons
Yannarelli, Gustavo Gabriel
Ascorbate peroxidase
Catalase
Helianthus annuus L
Hydrogen peroxide
Peroxidase
UV-B radiatio
title_short Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons
title_full Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons
title_fullStr Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons
title_full_unstemmed Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons
title_sort Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons
dc.creator.none.fl_str_mv Yannarelli, Gustavo Gabriel
Gallego, Susana Mabel
Tomaro, Maria Lujan
author Yannarelli, Gustavo Gabriel
author_facet Yannarelli, Gustavo Gabriel
Gallego, Susana Mabel
Tomaro, Maria Lujan
author_role author
author2 Gallego, Susana Mabel
Tomaro, Maria Lujan
author2_role author
author
dc.subject.none.fl_str_mv Ascorbate peroxidase
Catalase
Helianthus annuus L
Hydrogen peroxide
Peroxidase
UV-B radiatio
topic Ascorbate peroxidase
Catalase
Helianthus annuus L
Hydrogen peroxide
Peroxidase
UV-B radiatio
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Ultraviolet-B (UV-B) radiation produces oxidative stress by increasing active oxygen species (AOS) such as singlet oxygen, superoxide anion, hydrogen peroxide and hydroxyl radicals. Recent studies confirm that hydrogen peroxide is a signaling molecule that mediates responses to abiotic and biotic stresses in plants. Peroxidases are a variety of enzymes that catalyze the breakdown of H2O2 with the concomitant dependent oxidation of a wide variety of substrates. The behavior of activities and isoforms of catalase (CAT), ascorbate peroxidase (APX) and peroxidases (POD) was investigated in the cotyledons of Helianthus annuus L. subjected to UV-B radiation. Under UV-B treatments (15 and 30 kJm−2) and later recovery in darkness or in white light, APX activity remains unaltered. Compared to control, CAT and guaiacol peroxidase (GPX) activities were increased at the two UV-B doses and after dark recuperation, but both enzymes returned to controls values when plants were treated with 30 kJm−2 UV-B radiation and recovered under white light. Control sunflower cotyledons had one CAT and four APX isoforms which were altered by UV-B irradiation and recuperation treatments. In control cotyledons were observed two isoforms of POD (POD1 and POD2). Only POD2 activity was increased by 15 kJm−2 and decreased by 30 kJm−2 UV-B radiation, but both the POD activities increased when plants were recovered in darkness or in white light. We observed a new POD isoform (POD3) after dark recuperation when plants were treated with 30 kJm−2 UV-B dose. Chromatography in a Mono Q column showed three á-naphthol activity peaks corresponding to the three isoforms observed in stained gels, but only POD3 had activity when guaiacol was used as substrate. On the other hand, treatments with different hydrogen peroxide concentrations increased the activity of the two POD isoforms (POD1 and POD2) observed in control cotyledons, but POD3 was absent. Sunflower plants acclimatize themselves to UV-B radiation by induction of different isoforms of POD. Catalase, APX, POD1 and POD2 work directly as oxygen species scavenger and POD3 could play a role in polyphenols metabolism, increasing the antioxidant capacity or cross-linking UV-absorbing phenolics.
Fil: Yannarelli, Gustavo Gabriel. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gallego, Susana Mabel. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentina
Fil: Tomaro, Maria Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; Argentina
description Ultraviolet-B (UV-B) radiation produces oxidative stress by increasing active oxygen species (AOS) such as singlet oxygen, superoxide anion, hydrogen peroxide and hydroxyl radicals. Recent studies confirm that hydrogen peroxide is a signaling molecule that mediates responses to abiotic and biotic stresses in plants. Peroxidases are a variety of enzymes that catalyze the breakdown of H2O2 with the concomitant dependent oxidation of a wide variety of substrates. The behavior of activities and isoforms of catalase (CAT), ascorbate peroxidase (APX) and peroxidases (POD) was investigated in the cotyledons of Helianthus annuus L. subjected to UV-B radiation. Under UV-B treatments (15 and 30 kJm−2) and later recovery in darkness or in white light, APX activity remains unaltered. Compared to control, CAT and guaiacol peroxidase (GPX) activities were increased at the two UV-B doses and after dark recuperation, but both enzymes returned to controls values when plants were treated with 30 kJm−2 UV-B radiation and recovered under white light. Control sunflower cotyledons had one CAT and four APX isoforms which were altered by UV-B irradiation and recuperation treatments. In control cotyledons were observed two isoforms of POD (POD1 and POD2). Only POD2 activity was increased by 15 kJm−2 and decreased by 30 kJm−2 UV-B radiation, but both the POD activities increased when plants were recovered in darkness or in white light. We observed a new POD isoform (POD3) after dark recuperation when plants were treated with 30 kJm−2 UV-B dose. Chromatography in a Mono Q column showed three á-naphthol activity peaks corresponding to the three isoforms observed in stained gels, but only POD3 had activity when guaiacol was used as substrate. On the other hand, treatments with different hydrogen peroxide concentrations increased the activity of the two POD isoforms (POD1 and POD2) observed in control cotyledons, but POD3 was absent. Sunflower plants acclimatize themselves to UV-B radiation by induction of different isoforms of POD. Catalase, APX, POD1 and POD2 work directly as oxygen species scavenger and POD3 could play a role in polyphenols metabolism, increasing the antioxidant capacity or cross-linking UV-absorbing phenolics.
publishDate 2006
dc.date.none.fl_str_mv 2006-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/241792
Yannarelli, Gustavo Gabriel; Gallego, Susana Mabel; Tomaro, Maria Lujan; Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons; Pergamon-Elsevier Science Ltd; Environmental and Experimental Botany; 56; 2; 12-2006; 174-181
0098-8472
CONICET Digital
CONICET
url http://hdl.handle.net/11336/241792
identifier_str_mv Yannarelli, Gustavo Gabriel; Gallego, Susana Mabel; Tomaro, Maria Lujan; Effect of UV-B radiation on the activity and isoforms of enzymes with peroxidase activity in sunflower cotyledons; Pergamon-Elsevier Science Ltd; Environmental and Experimental Botany; 56; 2; 12-2006; 174-181
0098-8472
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098847205000286
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.envexpbot.2005.01.015
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980641318109184
score 12.993085