Distance dependence of Single-Fluorophore quenching by gold nanoparticles studied on DNA Origami

Autores
Acuna, Guillermo P.; Bucher, Martina; Stein, Ingo H.; Steinhauer, Christian; Kuzyk, Anton; Holzmeister, Phil; Schreiber, Robert; Moroz, Alexander; Stefani, Fernando Daniel; Liedl, Tim; Simmel, Friedrich C.; Tinnefeld, Philip
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the distance-dependent quenching of fluorescence due to a metallic nanoparticle in proximity of a fluorophore. In our single-molecule measurements, we achieve excellent control over structure and stoichiometry by using self-assembled DNA structures (DNA origami) as a breadboard where both the fluorophore and the 10 nm metallic nanoparticle are positioned with nanometer precision. The single-molecule spectroscopy method employed here reports on the co-localization of particle and dye, while fluorescence lifetime imaging is used to directly obtain the correlation of intensity and fluorescence lifetime for varying particle to dye distances. Our data can be well explained by exact calculations that include dipole dipole orientation and distances. Fitting with a more practical model for nanosurface energy transfer yields 10.4 nm as the characteristic distance of 50% energy transfer. The use of DNA nanotechnology together with minimal sample usage by attaching the particles to the DNA origami directly on the microscope coverslip paves the way for more complex experiments exploiting dye nanoparticle interactions.
Fil: Acuna, Guillermo P.. Technische Universität Braunschweig; Alemania
Fil: Bucher, Martina. Ludwig Maximilians Universitat; Alemania
Fil: Stein, Ingo H.. Ludwig Maximilians Universitat; Alemania
Fil: Steinhauer, Christian. Ludwig Maximilians Universitat; Alemania
Fil: Kuzyk, Anton. Technische Universitat Munchen; Alemania
Fil: Holzmeister, Phil. Technische Universität Braunschweig; Alemania
Fil: Schreiber, Robert. Ludwig Maximilians Universitat; Alemania
Fil: Moroz, Alexander.
Fil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Liedl, Tim. Ludwig Maximilians Universitat; Alemania
Fil: Simmel, Friedrich C.. Technische Universitat Munchen; Alemania
Fil: Tinnefeld, Philip. Technische Universität Braunschweig; Alemania
Materia
Nanoparticle
Dna Origami
Fluorescence
Plasmonics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/16892

id CONICETDig_ceadc9338dceddbb60dc1a3020fca3bd
oai_identifier_str oai:ri.conicet.gov.ar:11336/16892
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Distance dependence of Single-Fluorophore quenching by gold nanoparticles studied on DNA OrigamiAcuna, Guillermo P.Bucher, MartinaStein, Ingo H.Steinhauer, ChristianKuzyk, AntonHolzmeister, PhilSchreiber, RobertMoroz, AlexanderStefani, Fernando DanielLiedl, TimSimmel, Friedrich C.Tinnefeld, PhilipNanoparticleDna OrigamiFluorescencePlasmonicshttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2We study the distance-dependent quenching of fluorescence due to a metallic nanoparticle in proximity of a fluorophore. In our single-molecule measurements, we achieve excellent control over structure and stoichiometry by using self-assembled DNA structures (DNA origami) as a breadboard where both the fluorophore and the 10 nm metallic nanoparticle are positioned with nanometer precision. The single-molecule spectroscopy method employed here reports on the co-localization of particle and dye, while fluorescence lifetime imaging is used to directly obtain the correlation of intensity and fluorescence lifetime for varying particle to dye distances. Our data can be well explained by exact calculations that include dipole dipole orientation and distances. Fitting with a more practical model for nanosurface energy transfer yields 10.4 nm as the characteristic distance of 50% energy transfer. The use of DNA nanotechnology together with minimal sample usage by attaching the particles to the DNA origami directly on the microscope coverslip paves the way for more complex experiments exploiting dye nanoparticle interactions.Fil: Acuna, Guillermo P.. Technische Universität Braunschweig; AlemaniaFil: Bucher, Martina. Ludwig Maximilians Universitat; AlemaniaFil: Stein, Ingo H.. Ludwig Maximilians Universitat; AlemaniaFil: Steinhauer, Christian. Ludwig Maximilians Universitat; AlemaniaFil: Kuzyk, Anton. Technische Universitat Munchen; AlemaniaFil: Holzmeister, Phil. Technische Universität Braunschweig; AlemaniaFil: Schreiber, Robert. Ludwig Maximilians Universitat; AlemaniaFil: Moroz, Alexander.Fil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Liedl, Tim. Ludwig Maximilians Universitat; AlemaniaFil: Simmel, Friedrich C.. Technische Universitat Munchen; AlemaniaFil: Tinnefeld, Philip. Technische Universität Braunschweig; AlemaniaAmerican Chemical Society2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16892Acuna, Guillermo P.; Bucher, Martina; Stein, Ingo H.; Steinhauer, Christian; Kuzyk, Anton; et al.; Distance dependence of Single-Fluorophore quenching by gold nanoparticles studied on DNA Origami; American Chemical Society; Acs Nano; 6; 4; 4-2012; 3189-31951936-08511936-086Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/nn2050483info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/nn2050483info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:33Zoai:ri.conicet.gov.ar:11336/16892instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:33.524CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Distance dependence of Single-Fluorophore quenching by gold nanoparticles studied on DNA Origami
title Distance dependence of Single-Fluorophore quenching by gold nanoparticles studied on DNA Origami
spellingShingle Distance dependence of Single-Fluorophore quenching by gold nanoparticles studied on DNA Origami
Acuna, Guillermo P.
Nanoparticle
Dna Origami
Fluorescence
Plasmonics
title_short Distance dependence of Single-Fluorophore quenching by gold nanoparticles studied on DNA Origami
title_full Distance dependence of Single-Fluorophore quenching by gold nanoparticles studied on DNA Origami
title_fullStr Distance dependence of Single-Fluorophore quenching by gold nanoparticles studied on DNA Origami
title_full_unstemmed Distance dependence of Single-Fluorophore quenching by gold nanoparticles studied on DNA Origami
title_sort Distance dependence of Single-Fluorophore quenching by gold nanoparticles studied on DNA Origami
dc.creator.none.fl_str_mv Acuna, Guillermo P.
Bucher, Martina
Stein, Ingo H.
Steinhauer, Christian
Kuzyk, Anton
Holzmeister, Phil
Schreiber, Robert
Moroz, Alexander
Stefani, Fernando Daniel
Liedl, Tim
Simmel, Friedrich C.
Tinnefeld, Philip
author Acuna, Guillermo P.
author_facet Acuna, Guillermo P.
Bucher, Martina
Stein, Ingo H.
Steinhauer, Christian
Kuzyk, Anton
Holzmeister, Phil
Schreiber, Robert
Moroz, Alexander
Stefani, Fernando Daniel
Liedl, Tim
Simmel, Friedrich C.
Tinnefeld, Philip
author_role author
author2 Bucher, Martina
Stein, Ingo H.
Steinhauer, Christian
Kuzyk, Anton
Holzmeister, Phil
Schreiber, Robert
Moroz, Alexander
Stefani, Fernando Daniel
Liedl, Tim
Simmel, Friedrich C.
Tinnefeld, Philip
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Nanoparticle
Dna Origami
Fluorescence
Plasmonics
topic Nanoparticle
Dna Origami
Fluorescence
Plasmonics
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv We study the distance-dependent quenching of fluorescence due to a metallic nanoparticle in proximity of a fluorophore. In our single-molecule measurements, we achieve excellent control over structure and stoichiometry by using self-assembled DNA structures (DNA origami) as a breadboard where both the fluorophore and the 10 nm metallic nanoparticle are positioned with nanometer precision. The single-molecule spectroscopy method employed here reports on the co-localization of particle and dye, while fluorescence lifetime imaging is used to directly obtain the correlation of intensity and fluorescence lifetime for varying particle to dye distances. Our data can be well explained by exact calculations that include dipole dipole orientation and distances. Fitting with a more practical model for nanosurface energy transfer yields 10.4 nm as the characteristic distance of 50% energy transfer. The use of DNA nanotechnology together with minimal sample usage by attaching the particles to the DNA origami directly on the microscope coverslip paves the way for more complex experiments exploiting dye nanoparticle interactions.
Fil: Acuna, Guillermo P.. Technische Universität Braunschweig; Alemania
Fil: Bucher, Martina. Ludwig Maximilians Universitat; Alemania
Fil: Stein, Ingo H.. Ludwig Maximilians Universitat; Alemania
Fil: Steinhauer, Christian. Ludwig Maximilians Universitat; Alemania
Fil: Kuzyk, Anton. Technische Universitat Munchen; Alemania
Fil: Holzmeister, Phil. Technische Universität Braunschweig; Alemania
Fil: Schreiber, Robert. Ludwig Maximilians Universitat; Alemania
Fil: Moroz, Alexander.
Fil: Stefani, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Liedl, Tim. Ludwig Maximilians Universitat; Alemania
Fil: Simmel, Friedrich C.. Technische Universitat Munchen; Alemania
Fil: Tinnefeld, Philip. Technische Universität Braunschweig; Alemania
description We study the distance-dependent quenching of fluorescence due to a metallic nanoparticle in proximity of a fluorophore. In our single-molecule measurements, we achieve excellent control over structure and stoichiometry by using self-assembled DNA structures (DNA origami) as a breadboard where both the fluorophore and the 10 nm metallic nanoparticle are positioned with nanometer precision. The single-molecule spectroscopy method employed here reports on the co-localization of particle and dye, while fluorescence lifetime imaging is used to directly obtain the correlation of intensity and fluorescence lifetime for varying particle to dye distances. Our data can be well explained by exact calculations that include dipole dipole orientation and distances. Fitting with a more practical model for nanosurface energy transfer yields 10.4 nm as the characteristic distance of 50% energy transfer. The use of DNA nanotechnology together with minimal sample usage by attaching the particles to the DNA origami directly on the microscope coverslip paves the way for more complex experiments exploiting dye nanoparticle interactions.
publishDate 2012
dc.date.none.fl_str_mv 2012-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/16892
Acuna, Guillermo P.; Bucher, Martina; Stein, Ingo H.; Steinhauer, Christian; Kuzyk, Anton; et al.; Distance dependence of Single-Fluorophore quenching by gold nanoparticles studied on DNA Origami; American Chemical Society; Acs Nano; 6; 4; 4-2012; 3189-3195
1936-0851
1936-086X
url http://hdl.handle.net/11336/16892
identifier_str_mv Acuna, Guillermo P.; Bucher, Martina; Stein, Ingo H.; Steinhauer, Christian; Kuzyk, Anton; et al.; Distance dependence of Single-Fluorophore quenching by gold nanoparticles studied on DNA Origami; American Chemical Society; Acs Nano; 6; 4; 4-2012; 3189-3195
1936-0851
1936-086X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/nn2050483
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/nn2050483
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269232806494208
score 13.13397