Two-dimensional twistor manifolds and Teukolsky operators
- Autores
- Araneda, Bernardo Gabriel
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Teukolsky equations are currently the leading approach for analysing stability of linear massless fields propagating in rotating black holes. It has recently been shown that the geometry of these equations can be understood in terms of a connection constructed from the conformal and complex structure of Petrov type D spaces. Since the study of linear massless fields by a combination of conformal, complex and spinor methods is a distinctive feature of twistor theory, and since versions of the twistor equation have recently been shown to appear in the Teukolsky equations, this raises the question of whether there are deeper twistor structures underlying this geometry. In this work we show that all these geometric structures can be understood naturally by considering a 2-dimensional twistor manifold, whereas in twistor theory the standard (projective) twistor space is 3-dimensional.
Fil: Araneda, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
TWISTOR THEORY
GENERAL RELATIVITY
PERTURBATIONS
TEUKOLSKY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143956
Ver los metadatos del registro completo
id |
CONICETDig_cdec39a8579b52541aa0ad71715d1810 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143956 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Two-dimensional twistor manifolds and Teukolsky operatorsAraneda, Bernardo GabrielTWISTOR THEORYGENERAL RELATIVITYPERTURBATIONSTEUKOLSKYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Teukolsky equations are currently the leading approach for analysing stability of linear massless fields propagating in rotating black holes. It has recently been shown that the geometry of these equations can be understood in terms of a connection constructed from the conformal and complex structure of Petrov type D spaces. Since the study of linear massless fields by a combination of conformal, complex and spinor methods is a distinctive feature of twistor theory, and since versions of the twistor equation have recently been shown to appear in the Teukolsky equations, this raises the question of whether there are deeper twistor structures underlying this geometry. In this work we show that all these geometric structures can be understood naturally by considering a 2-dimensional twistor manifold, whereas in twistor theory the standard (projective) twistor space is 3-dimensional.Fil: Araneda, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaSpringer2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143956Araneda, Bernardo Gabriel; Two-dimensional twistor manifolds and Teukolsky operators; Springer; Letters In Mathematical Physics; 110; 10; 10-2020; 2603-26380377-90171573-0530CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11005-020-01307-8info:eu-repo/semantics/altIdentifier/doi/10.1007/s11005-020-01307-8info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1907.02507info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:57:07Zoai:ri.conicet.gov.ar:11336/143956instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:57:08.287CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Two-dimensional twistor manifolds and Teukolsky operators |
title |
Two-dimensional twistor manifolds and Teukolsky operators |
spellingShingle |
Two-dimensional twistor manifolds and Teukolsky operators Araneda, Bernardo Gabriel TWISTOR THEORY GENERAL RELATIVITY PERTURBATIONS TEUKOLSKY |
title_short |
Two-dimensional twistor manifolds and Teukolsky operators |
title_full |
Two-dimensional twistor manifolds and Teukolsky operators |
title_fullStr |
Two-dimensional twistor manifolds and Teukolsky operators |
title_full_unstemmed |
Two-dimensional twistor manifolds and Teukolsky operators |
title_sort |
Two-dimensional twistor manifolds and Teukolsky operators |
dc.creator.none.fl_str_mv |
Araneda, Bernardo Gabriel |
author |
Araneda, Bernardo Gabriel |
author_facet |
Araneda, Bernardo Gabriel |
author_role |
author |
dc.subject.none.fl_str_mv |
TWISTOR THEORY GENERAL RELATIVITY PERTURBATIONS TEUKOLSKY |
topic |
TWISTOR THEORY GENERAL RELATIVITY PERTURBATIONS TEUKOLSKY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Teukolsky equations are currently the leading approach for analysing stability of linear massless fields propagating in rotating black holes. It has recently been shown that the geometry of these equations can be understood in terms of a connection constructed from the conformal and complex structure of Petrov type D spaces. Since the study of linear massless fields by a combination of conformal, complex and spinor methods is a distinctive feature of twistor theory, and since versions of the twistor equation have recently been shown to appear in the Teukolsky equations, this raises the question of whether there are deeper twistor structures underlying this geometry. In this work we show that all these geometric structures can be understood naturally by considering a 2-dimensional twistor manifold, whereas in twistor theory the standard (projective) twistor space is 3-dimensional. Fil: Araneda, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
The Teukolsky equations are currently the leading approach for analysing stability of linear massless fields propagating in rotating black holes. It has recently been shown that the geometry of these equations can be understood in terms of a connection constructed from the conformal and complex structure of Petrov type D spaces. Since the study of linear massless fields by a combination of conformal, complex and spinor methods is a distinctive feature of twistor theory, and since versions of the twistor equation have recently been shown to appear in the Teukolsky equations, this raises the question of whether there are deeper twistor structures underlying this geometry. In this work we show that all these geometric structures can be understood naturally by considering a 2-dimensional twistor manifold, whereas in twistor theory the standard (projective) twistor space is 3-dimensional. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143956 Araneda, Bernardo Gabriel; Two-dimensional twistor manifolds and Teukolsky operators; Springer; Letters In Mathematical Physics; 110; 10; 10-2020; 2603-2638 0377-9017 1573-0530 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143956 |
identifier_str_mv |
Araneda, Bernardo Gabriel; Two-dimensional twistor manifolds and Teukolsky operators; Springer; Letters In Mathematical Physics; 110; 10; 10-2020; 2603-2638 0377-9017 1573-0530 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11005-020-01307-8 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11005-020-01307-8 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1907.02507 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782280482160640 |
score |
13.229304 |