Two-dimensional twistor manifolds and Teukolsky operators

Autores
Araneda, Bernardo Gabriel
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Teukolsky equations are currently the leading approach for analysing stability of linear massless fields propagating in rotating black holes. It has recently been shown that the geometry of these equations can be understood in terms of a connection constructed from the conformal and complex structure of Petrov type D spaces. Since the study of linear massless fields by a combination of conformal, complex and spinor methods is a distinctive feature of twistor theory, and since versions of the twistor equation have recently been shown to appear in the Teukolsky equations, this raises the question of whether there are deeper twistor structures underlying this geometry. In this work we show that all these geometric structures can be understood naturally by considering a 2-dimensional twistor manifold, whereas in twistor theory the standard (projective) twistor space is 3-dimensional.
Fil: Araneda, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
TWISTOR THEORY
GENERAL RELATIVITY
PERTURBATIONS
TEUKOLSKY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/143956

id CONICETDig_cdec39a8579b52541aa0ad71715d1810
oai_identifier_str oai:ri.conicet.gov.ar:11336/143956
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Two-dimensional twistor manifolds and Teukolsky operatorsAraneda, Bernardo GabrielTWISTOR THEORYGENERAL RELATIVITYPERTURBATIONSTEUKOLSKYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Teukolsky equations are currently the leading approach for analysing stability of linear massless fields propagating in rotating black holes. It has recently been shown that the geometry of these equations can be understood in terms of a connection constructed from the conformal and complex structure of Petrov type D spaces. Since the study of linear massless fields by a combination of conformal, complex and spinor methods is a distinctive feature of twistor theory, and since versions of the twistor equation have recently been shown to appear in the Teukolsky equations, this raises the question of whether there are deeper twistor structures underlying this geometry. In this work we show that all these geometric structures can be understood naturally by considering a 2-dimensional twistor manifold, whereas in twistor theory the standard (projective) twistor space is 3-dimensional.Fil: Araneda, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaSpringer2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143956Araneda, Bernardo Gabriel; Two-dimensional twistor manifolds and Teukolsky operators; Springer; Letters In Mathematical Physics; 110; 10; 10-2020; 2603-26380377-90171573-0530CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11005-020-01307-8info:eu-repo/semantics/altIdentifier/doi/10.1007/s11005-020-01307-8info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1907.02507info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:57:07Zoai:ri.conicet.gov.ar:11336/143956instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:57:08.287CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Two-dimensional twistor manifolds and Teukolsky operators
title Two-dimensional twistor manifolds and Teukolsky operators
spellingShingle Two-dimensional twistor manifolds and Teukolsky operators
Araneda, Bernardo Gabriel
TWISTOR THEORY
GENERAL RELATIVITY
PERTURBATIONS
TEUKOLSKY
title_short Two-dimensional twistor manifolds and Teukolsky operators
title_full Two-dimensional twistor manifolds and Teukolsky operators
title_fullStr Two-dimensional twistor manifolds and Teukolsky operators
title_full_unstemmed Two-dimensional twistor manifolds and Teukolsky operators
title_sort Two-dimensional twistor manifolds and Teukolsky operators
dc.creator.none.fl_str_mv Araneda, Bernardo Gabriel
author Araneda, Bernardo Gabriel
author_facet Araneda, Bernardo Gabriel
author_role author
dc.subject.none.fl_str_mv TWISTOR THEORY
GENERAL RELATIVITY
PERTURBATIONS
TEUKOLSKY
topic TWISTOR THEORY
GENERAL RELATIVITY
PERTURBATIONS
TEUKOLSKY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Teukolsky equations are currently the leading approach for analysing stability of linear massless fields propagating in rotating black holes. It has recently been shown that the geometry of these equations can be understood in terms of a connection constructed from the conformal and complex structure of Petrov type D spaces. Since the study of linear massless fields by a combination of conformal, complex and spinor methods is a distinctive feature of twistor theory, and since versions of the twistor equation have recently been shown to appear in the Teukolsky equations, this raises the question of whether there are deeper twistor structures underlying this geometry. In this work we show that all these geometric structures can be understood naturally by considering a 2-dimensional twistor manifold, whereas in twistor theory the standard (projective) twistor space is 3-dimensional.
Fil: Araneda, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description The Teukolsky equations are currently the leading approach for analysing stability of linear massless fields propagating in rotating black holes. It has recently been shown that the geometry of these equations can be understood in terms of a connection constructed from the conformal and complex structure of Petrov type D spaces. Since the study of linear massless fields by a combination of conformal, complex and spinor methods is a distinctive feature of twistor theory, and since versions of the twistor equation have recently been shown to appear in the Teukolsky equations, this raises the question of whether there are deeper twistor structures underlying this geometry. In this work we show that all these geometric structures can be understood naturally by considering a 2-dimensional twistor manifold, whereas in twistor theory the standard (projective) twistor space is 3-dimensional.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/143956
Araneda, Bernardo Gabriel; Two-dimensional twistor manifolds and Teukolsky operators; Springer; Letters In Mathematical Physics; 110; 10; 10-2020; 2603-2638
0377-9017
1573-0530
CONICET Digital
CONICET
url http://hdl.handle.net/11336/143956
identifier_str_mv Araneda, Bernardo Gabriel; Two-dimensional twistor manifolds and Teukolsky operators; Springer; Letters In Mathematical Physics; 110; 10; 10-2020; 2603-2638
0377-9017
1573-0530
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11005-020-01307-8
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11005-020-01307-8
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1907.02507
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782280482160640
score 13.229304