Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes

Autores
Araneda, Bernardo Gabriel
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present weighted covariant derivatives and wave operators for perturbations of certain algebraically special Einstein spacetimes in arbitrary dimensions, under which the Teukolsky and related equations become weighted wave equations. We show that the higher dimensional generalization of the principal null directions are weighted conformal Killing vectors with respect to the modified covariant derivative. We also introduce a modified Laplace-de Rham-like operator acting on tensor-valued differential forms, and show that the wave-like equations are, at the linear level, appropriate projections off shell of this operator acting on the curvature tensor; the projection tensors being made out of weighted conformal Killing-Yano tensors. We give off shell operator identities that map the Einstein and Maxwell equations into weighted scalar equations, and using adjoint operators we construct solutions of the original field equations in a compact form from solutions of the wave-like equations. We study the extreme and zero boost weight cases; extreme boost corresponding to perturbations of Kundt spacetimes (which includes near horizon geometries of extreme black holes), and zero boost to static black holes in arbitrary dimensions. In 4D our results apply to Einstein spacetimes of Petrov type D and make use of weighted Killing spinors.
Fil: Araneda, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
BLACK HOLES
HIGHER DIMENSIONAL SPACETIMES
PERTURBATIONS
SYMMETRIES
WEIGHTED OPERATORS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/91690

id CONICETDig_2db74a28badb5eba7802f061afe34622
oai_identifier_str oai:ri.conicet.gov.ar:11336/91690
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimesAraneda, Bernardo GabrielBLACK HOLESHIGHER DIMENSIONAL SPACETIMESPERTURBATIONSSYMMETRIESWEIGHTED OPERATORShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present weighted covariant derivatives and wave operators for perturbations of certain algebraically special Einstein spacetimes in arbitrary dimensions, under which the Teukolsky and related equations become weighted wave equations. We show that the higher dimensional generalization of the principal null directions are weighted conformal Killing vectors with respect to the modified covariant derivative. We also introduce a modified Laplace-de Rham-like operator acting on tensor-valued differential forms, and show that the wave-like equations are, at the linear level, appropriate projections off shell of this operator acting on the curvature tensor; the projection tensors being made out of weighted conformal Killing-Yano tensors. We give off shell operator identities that map the Einstein and Maxwell equations into weighted scalar equations, and using adjoint operators we construct solutions of the original field equations in a compact form from solutions of the wave-like equations. We study the extreme and zero boost weight cases; extreme boost corresponding to perturbations of Kundt spacetimes (which includes near horizon geometries of extreme black holes), and zero boost to static black holes in arbitrary dimensions. In 4D our results apply to Einstein spacetimes of Petrov type D and make use of weighted Killing spinors.Fil: Araneda, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaIOP Publishing2018-03-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/91690Araneda, Bernardo Gabriel; Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes; IOP Publishing; Classical and Quantum Gravity; 35; 7; 9-3-20180264-9381CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://stacks.iop.org/0264-9381/35/i=7/a=075015?key=crossref.6ab625b9557a793e7b0a1d7f9678d866info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6382/aab06ainfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1711.09872info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:06Zoai:ri.conicet.gov.ar:11336/91690instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:06.355CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes
title Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes
spellingShingle Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes
Araneda, Bernardo Gabriel
BLACK HOLES
HIGHER DIMENSIONAL SPACETIMES
PERTURBATIONS
SYMMETRIES
WEIGHTED OPERATORS
title_short Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes
title_full Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes
title_fullStr Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes
title_full_unstemmed Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes
title_sort Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes
dc.creator.none.fl_str_mv Araneda, Bernardo Gabriel
author Araneda, Bernardo Gabriel
author_facet Araneda, Bernardo Gabriel
author_role author
dc.subject.none.fl_str_mv BLACK HOLES
HIGHER DIMENSIONAL SPACETIMES
PERTURBATIONS
SYMMETRIES
WEIGHTED OPERATORS
topic BLACK HOLES
HIGHER DIMENSIONAL SPACETIMES
PERTURBATIONS
SYMMETRIES
WEIGHTED OPERATORS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present weighted covariant derivatives and wave operators for perturbations of certain algebraically special Einstein spacetimes in arbitrary dimensions, under which the Teukolsky and related equations become weighted wave equations. We show that the higher dimensional generalization of the principal null directions are weighted conformal Killing vectors with respect to the modified covariant derivative. We also introduce a modified Laplace-de Rham-like operator acting on tensor-valued differential forms, and show that the wave-like equations are, at the linear level, appropriate projections off shell of this operator acting on the curvature tensor; the projection tensors being made out of weighted conformal Killing-Yano tensors. We give off shell operator identities that map the Einstein and Maxwell equations into weighted scalar equations, and using adjoint operators we construct solutions of the original field equations in a compact form from solutions of the wave-like equations. We study the extreme and zero boost weight cases; extreme boost corresponding to perturbations of Kundt spacetimes (which includes near horizon geometries of extreme black holes), and zero boost to static black holes in arbitrary dimensions. In 4D our results apply to Einstein spacetimes of Petrov type D and make use of weighted Killing spinors.
Fil: Araneda, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description We present weighted covariant derivatives and wave operators for perturbations of certain algebraically special Einstein spacetimes in arbitrary dimensions, under which the Teukolsky and related equations become weighted wave equations. We show that the higher dimensional generalization of the principal null directions are weighted conformal Killing vectors with respect to the modified covariant derivative. We also introduce a modified Laplace-de Rham-like operator acting on tensor-valued differential forms, and show that the wave-like equations are, at the linear level, appropriate projections off shell of this operator acting on the curvature tensor; the projection tensors being made out of weighted conformal Killing-Yano tensors. We give off shell operator identities that map the Einstein and Maxwell equations into weighted scalar equations, and using adjoint operators we construct solutions of the original field equations in a compact form from solutions of the wave-like equations. We study the extreme and zero boost weight cases; extreme boost corresponding to perturbations of Kundt spacetimes (which includes near horizon geometries of extreme black holes), and zero boost to static black holes in arbitrary dimensions. In 4D our results apply to Einstein spacetimes of Petrov type D and make use of weighted Killing spinors.
publishDate 2018
dc.date.none.fl_str_mv 2018-03-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/91690
Araneda, Bernardo Gabriel; Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes; IOP Publishing; Classical and Quantum Gravity; 35; 7; 9-3-2018
0264-9381
CONICET Digital
CONICET
url http://hdl.handle.net/11336/91690
identifier_str_mv Araneda, Bernardo Gabriel; Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes; IOP Publishing; Classical and Quantum Gravity; 35; 7; 9-3-2018
0264-9381
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://stacks.iop.org/0264-9381/35/i=7/a=075015?key=crossref.6ab625b9557a793e7b0a1d7f9678d866
info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6382/aab06a
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1711.09872
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613599362809856
score 13.070432