Why DFT-Based Tight Binding Gives a Better Representation of the Potential at Metal-Solution Interfaces than DFT Does
- Autores
- Quaino, Paola Monica; Nuñez, José Luis; Aradi, Bálint; van der Heide, Tammo; Santos, Elizabeth; Schmickler, Wolfgang
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In modelling electrochemical interfaces it is important to treat electrode and electrolyte at the same level of theory. Density functional theory, which is usually the method of choice, suffers from a distinct disadvantage: The inner potential is calculated as the average of the total electrostatic potential. This includes the highly localized potential generated from the nuclei. The resulting inner potential is far too high, of the order of 3.5 V, and not relevant for electrochemistry. In the density functional based tight binding (DFTB) method the electrostatic potential is much smoother, as it stems from atomic charge fluctuations with respect to neutral reference atoms. The resulting values for the electrochemical inner potential are much lower and compare well with those obtained by other, elaborate methods. Thus DFTB recommends itself as a method for treating the electrochemical interface including the inner potential.
Fil: Quaino, Paola Monica. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; Argentina
Fil: Nuñez, José Luis. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; Argentina
Fil: Aradi, Bálint. Universitat Bremen; Alemania
Fil: van der Heide, Tammo. Universitat Bremen; Alemania
Fil: Santos, Elizabeth. Universitat Ulm; Alemania
Fil: Schmickler, Wolfgang. Universitat Ulm; Alemania - Materia
-
DFT
INNER POTENTIAL
POTENTIAL OF ZERO CHARGE
TIGHT BINDING
WORK FUNCTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/226244
Ver los metadatos del registro completo
id |
CONICETDig_ccc3d331fa0693aa1f5b7867bc8f4483 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/226244 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Why DFT-Based Tight Binding Gives a Better Representation of the Potential at Metal-Solution Interfaces than DFT DoesQuaino, Paola MonicaNuñez, José LuisAradi, Bálintvan der Heide, TammoSantos, ElizabethSchmickler, WolfgangDFTINNER POTENTIALPOTENTIAL OF ZERO CHARGETIGHT BINDINGWORK FUNCTIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In modelling electrochemical interfaces it is important to treat electrode and electrolyte at the same level of theory. Density functional theory, which is usually the method of choice, suffers from a distinct disadvantage: The inner potential is calculated as the average of the total electrostatic potential. This includes the highly localized potential generated from the nuclei. The resulting inner potential is far too high, of the order of 3.5 V, and not relevant for electrochemistry. In the density functional based tight binding (DFTB) method the electrostatic potential is much smoother, as it stems from atomic charge fluctuations with respect to neutral reference atoms. The resulting values for the electrochemical inner potential are much lower and compare well with those obtained by other, elaborate methods. Thus DFTB recommends itself as a method for treating the electrochemical interface including the inner potential.Fil: Quaino, Paola Monica. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; ArgentinaFil: Nuñez, José Luis. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; ArgentinaFil: Aradi, Bálint. Universitat Bremen; AlemaniaFil: van der Heide, Tammo. Universitat Bremen; AlemaniaFil: Santos, Elizabeth. Universitat Ulm; AlemaniaFil: Schmickler, Wolfgang. Universitat Ulm; AlemaniaJohn Wiley & Sons2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/226244Quaino, Paola Monica; Nuñez, José Luis; Aradi, Bálint; van der Heide, Tammo; Santos, Elizabeth; et al.; Why DFT-Based Tight Binding Gives a Better Representation of the Potential at Metal-Solution Interfaces than DFT Does; John Wiley & Sons; ChemElectroChem; 10; 20; 10-2023; 1-72196-0216CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/celc.202300230info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:39:29Zoai:ri.conicet.gov.ar:11336/226244instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:39:29.4CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Why DFT-Based Tight Binding Gives a Better Representation of the Potential at Metal-Solution Interfaces than DFT Does |
title |
Why DFT-Based Tight Binding Gives a Better Representation of the Potential at Metal-Solution Interfaces than DFT Does |
spellingShingle |
Why DFT-Based Tight Binding Gives a Better Representation of the Potential at Metal-Solution Interfaces than DFT Does Quaino, Paola Monica DFT INNER POTENTIAL POTENTIAL OF ZERO CHARGE TIGHT BINDING WORK FUNCTION |
title_short |
Why DFT-Based Tight Binding Gives a Better Representation of the Potential at Metal-Solution Interfaces than DFT Does |
title_full |
Why DFT-Based Tight Binding Gives a Better Representation of the Potential at Metal-Solution Interfaces than DFT Does |
title_fullStr |
Why DFT-Based Tight Binding Gives a Better Representation of the Potential at Metal-Solution Interfaces than DFT Does |
title_full_unstemmed |
Why DFT-Based Tight Binding Gives a Better Representation of the Potential at Metal-Solution Interfaces than DFT Does |
title_sort |
Why DFT-Based Tight Binding Gives a Better Representation of the Potential at Metal-Solution Interfaces than DFT Does |
dc.creator.none.fl_str_mv |
Quaino, Paola Monica Nuñez, José Luis Aradi, Bálint van der Heide, Tammo Santos, Elizabeth Schmickler, Wolfgang |
author |
Quaino, Paola Monica |
author_facet |
Quaino, Paola Monica Nuñez, José Luis Aradi, Bálint van der Heide, Tammo Santos, Elizabeth Schmickler, Wolfgang |
author_role |
author |
author2 |
Nuñez, José Luis Aradi, Bálint van der Heide, Tammo Santos, Elizabeth Schmickler, Wolfgang |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
DFT INNER POTENTIAL POTENTIAL OF ZERO CHARGE TIGHT BINDING WORK FUNCTION |
topic |
DFT INNER POTENTIAL POTENTIAL OF ZERO CHARGE TIGHT BINDING WORK FUNCTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In modelling electrochemical interfaces it is important to treat electrode and electrolyte at the same level of theory. Density functional theory, which is usually the method of choice, suffers from a distinct disadvantage: The inner potential is calculated as the average of the total electrostatic potential. This includes the highly localized potential generated from the nuclei. The resulting inner potential is far too high, of the order of 3.5 V, and not relevant for electrochemistry. In the density functional based tight binding (DFTB) method the electrostatic potential is much smoother, as it stems from atomic charge fluctuations with respect to neutral reference atoms. The resulting values for the electrochemical inner potential are much lower and compare well with those obtained by other, elaborate methods. Thus DFTB recommends itself as a method for treating the electrochemical interface including the inner potential. Fil: Quaino, Paola Monica. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; Argentina Fil: Nuñez, José Luis. Universidad Nacional del Litoral. Instituto de Química Aplicada del Litoral. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Química Aplicada del Litoral.; Argentina Fil: Aradi, Bálint. Universitat Bremen; Alemania Fil: van der Heide, Tammo. Universitat Bremen; Alemania Fil: Santos, Elizabeth. Universitat Ulm; Alemania Fil: Schmickler, Wolfgang. Universitat Ulm; Alemania |
description |
In modelling electrochemical interfaces it is important to treat electrode and electrolyte at the same level of theory. Density functional theory, which is usually the method of choice, suffers from a distinct disadvantage: The inner potential is calculated as the average of the total electrostatic potential. This includes the highly localized potential generated from the nuclei. The resulting inner potential is far too high, of the order of 3.5 V, and not relevant for electrochemistry. In the density functional based tight binding (DFTB) method the electrostatic potential is much smoother, as it stems from atomic charge fluctuations with respect to neutral reference atoms. The resulting values for the electrochemical inner potential are much lower and compare well with those obtained by other, elaborate methods. Thus DFTB recommends itself as a method for treating the electrochemical interface including the inner potential. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/226244 Quaino, Paola Monica; Nuñez, José Luis; Aradi, Bálint; van der Heide, Tammo; Santos, Elizabeth; et al.; Why DFT-Based Tight Binding Gives a Better Representation of the Potential at Metal-Solution Interfaces than DFT Does; John Wiley & Sons; ChemElectroChem; 10; 20; 10-2023; 1-7 2196-0216 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/226244 |
identifier_str_mv |
Quaino, Paola Monica; Nuñez, José Luis; Aradi, Bálint; van der Heide, Tammo; Santos, Elizabeth; et al.; Why DFT-Based Tight Binding Gives a Better Representation of the Potential at Metal-Solution Interfaces than DFT Does; John Wiley & Sons; ChemElectroChem; 10; 20; 10-2023; 1-7 2196-0216 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/celc.202300230 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons |
publisher.none.fl_str_mv |
John Wiley & Sons |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614420275134464 |
score |
13.070432 |