Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: Assessing experimental effects in a melanoma cell study
- Autores
- Fernandez, Elmer Andres; Girotti, Maria Romina; López del Olmo, Juan A.; Llera, Andrea Sabina; Podhajcer, Osvaldo Luis; Cantet, Rodolfo Juan Carlos; Balzarini, Monica Graciela
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Motivation: Difference in-gel electrophoresis (DIGE)-based protein expression analysis allows assessing the relative expression of proteins in two biological samples differently labeled (Cy5, Cy3 CyDyes). In the same gel, a reference sample is also used (Cy2 CyDye) for spot matching during image analysis and volume normalization. The standard statistical techniques to identify differentially expressed (DE) proteins are the calculation of fold-changes and the comparison of treatment means by the t-test. The analyses rarely accounts for other experimental effects, such as CyDye and gel effects, which could be important sources of noise while detecting treatment effects. Results: We propose to identify DIGEDE proteins using a two-stage linear mixed model. The proposal consists of splitting the overall model for the measured intensity into two interconnected models. First, we fit a normalization model that accounts for the general experimental effects, such as gel and CyDye effects as well as for the features of the associated random term distributions. Second, we fit a model that uses the residuals from the first step to account for differences between treatments in protein-by-protein basis. The modeling strategy was evaluated using data from a melanoma cell study. We found that a heteroskedastic model in the first stage, which also account for CyDye and gel effects, best normalized the data, while allowing for an efficient estimation of the treatment effects. The Cy2 reference channel was used as a covariate in the normalization model to avoid skewness of the residual distribution. Its inclusion improved the detection of DE proteins in the second stage.
Fil: Fernandez, Elmer Andres. Universidad Católica de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Girotti, Maria Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: López del Olmo, Juan A.. Fundación Centro Nacional de Investigaciones Cardiovasculares; España
Fil: Llera, Andrea Sabina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: Podhajcer, Osvaldo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Melanoma
2d Dige
Bioinformatics
Protein Expression - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/36959
Ver los metadatos del registro completo
id |
CONICETDig_cc9eb81e807fd43f8fa8aee4521515e4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/36959 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: Assessing experimental effects in a melanoma cell studyFernandez, Elmer AndresGirotti, Maria RominaLópez del Olmo, Juan A.Llera, Andrea SabinaPodhajcer, Osvaldo LuisCantet, Rodolfo Juan CarlosBalzarini, Monica GracielaMelanoma2d DigeBioinformaticsProtein Expressionhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Motivation: Difference in-gel electrophoresis (DIGE)-based protein expression analysis allows assessing the relative expression of proteins in two biological samples differently labeled (Cy5, Cy3 CyDyes). In the same gel, a reference sample is also used (Cy2 CyDye) for spot matching during image analysis and volume normalization. The standard statistical techniques to identify differentially expressed (DE) proteins are the calculation of fold-changes and the comparison of treatment means by the t-test. The analyses rarely accounts for other experimental effects, such as CyDye and gel effects, which could be important sources of noise while detecting treatment effects. Results: We propose to identify DIGEDE proteins using a two-stage linear mixed model. The proposal consists of splitting the overall model for the measured intensity into two interconnected models. First, we fit a normalization model that accounts for the general experimental effects, such as gel and CyDye effects as well as for the features of the associated random term distributions. Second, we fit a model that uses the residuals from the first step to account for differences between treatments in protein-by-protein basis. The modeling strategy was evaluated using data from a melanoma cell study. We found that a heteroskedastic model in the first stage, which also account for CyDye and gel effects, best normalized the data, while allowing for an efficient estimation of the treatment effects. The Cy2 reference channel was used as a covariate in the normalization model to avoid skewness of the residual distribution. Its inclusion improved the detection of DE proteins in the second stage.Fil: Fernandez, Elmer Andres. Universidad Católica de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Girotti, Maria Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: López del Olmo, Juan A.. Fundación Centro Nacional de Investigaciones Cardiovasculares; EspañaFil: Llera, Andrea Sabina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Podhajcer, Osvaldo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaOxford University Press2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/36959Fernandez, Elmer Andres; Girotti, Maria Romina; López del Olmo, Juan A. ; Llera, Andrea Sabina; Podhajcer, Osvaldo Luis; et al.; Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: Assessing experimental effects in a melanoma cell study; Oxford University Press; Bioinformatics (Oxford, England); 24; 23; 12-2008; 2706-27121367-4803CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/article/24/23/2706/179880info:eu-repo/semantics/altIdentifier/doi/10.1093/bioinformatics/btn508info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:06Zoai:ri.conicet.gov.ar:11336/36959instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:06.525CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: Assessing experimental effects in a melanoma cell study |
title |
Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: Assessing experimental effects in a melanoma cell study |
spellingShingle |
Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: Assessing experimental effects in a melanoma cell study Fernandez, Elmer Andres Melanoma 2d Dige Bioinformatics Protein Expression |
title_short |
Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: Assessing experimental effects in a melanoma cell study |
title_full |
Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: Assessing experimental effects in a melanoma cell study |
title_fullStr |
Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: Assessing experimental effects in a melanoma cell study |
title_full_unstemmed |
Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: Assessing experimental effects in a melanoma cell study |
title_sort |
Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: Assessing experimental effects in a melanoma cell study |
dc.creator.none.fl_str_mv |
Fernandez, Elmer Andres Girotti, Maria Romina López del Olmo, Juan A. Llera, Andrea Sabina Podhajcer, Osvaldo Luis Cantet, Rodolfo Juan Carlos Balzarini, Monica Graciela |
author |
Fernandez, Elmer Andres |
author_facet |
Fernandez, Elmer Andres Girotti, Maria Romina López del Olmo, Juan A. Llera, Andrea Sabina Podhajcer, Osvaldo Luis Cantet, Rodolfo Juan Carlos Balzarini, Monica Graciela |
author_role |
author |
author2 |
Girotti, Maria Romina López del Olmo, Juan A. Llera, Andrea Sabina Podhajcer, Osvaldo Luis Cantet, Rodolfo Juan Carlos Balzarini, Monica Graciela |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Melanoma 2d Dige Bioinformatics Protein Expression |
topic |
Melanoma 2d Dige Bioinformatics Protein Expression |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Motivation: Difference in-gel electrophoresis (DIGE)-based protein expression analysis allows assessing the relative expression of proteins in two biological samples differently labeled (Cy5, Cy3 CyDyes). In the same gel, a reference sample is also used (Cy2 CyDye) for spot matching during image analysis and volume normalization. The standard statistical techniques to identify differentially expressed (DE) proteins are the calculation of fold-changes and the comparison of treatment means by the t-test. The analyses rarely accounts for other experimental effects, such as CyDye and gel effects, which could be important sources of noise while detecting treatment effects. Results: We propose to identify DIGEDE proteins using a two-stage linear mixed model. The proposal consists of splitting the overall model for the measured intensity into two interconnected models. First, we fit a normalization model that accounts for the general experimental effects, such as gel and CyDye effects as well as for the features of the associated random term distributions. Second, we fit a model that uses the residuals from the first step to account for differences between treatments in protein-by-protein basis. The modeling strategy was evaluated using data from a melanoma cell study. We found that a heteroskedastic model in the first stage, which also account for CyDye and gel effects, best normalized the data, while allowing for an efficient estimation of the treatment effects. The Cy2 reference channel was used as a covariate in the normalization model to avoid skewness of the residual distribution. Its inclusion improved the detection of DE proteins in the second stage. Fil: Fernandez, Elmer Andres. Universidad Católica de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Girotti, Maria Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina Fil: López del Olmo, Juan A.. Fundación Centro Nacional de Investigaciones Cardiovasculares; España Fil: Llera, Andrea Sabina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina Fil: Podhajcer, Osvaldo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Balzarini, Monica Graciela. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Motivation: Difference in-gel electrophoresis (DIGE)-based protein expression analysis allows assessing the relative expression of proteins in two biological samples differently labeled (Cy5, Cy3 CyDyes). In the same gel, a reference sample is also used (Cy2 CyDye) for spot matching during image analysis and volume normalization. The standard statistical techniques to identify differentially expressed (DE) proteins are the calculation of fold-changes and the comparison of treatment means by the t-test. The analyses rarely accounts for other experimental effects, such as CyDye and gel effects, which could be important sources of noise while detecting treatment effects. Results: We propose to identify DIGEDE proteins using a two-stage linear mixed model. The proposal consists of splitting the overall model for the measured intensity into two interconnected models. First, we fit a normalization model that accounts for the general experimental effects, such as gel and CyDye effects as well as for the features of the associated random term distributions. Second, we fit a model that uses the residuals from the first step to account for differences between treatments in protein-by-protein basis. The modeling strategy was evaluated using data from a melanoma cell study. We found that a heteroskedastic model in the first stage, which also account for CyDye and gel effects, best normalized the data, while allowing for an efficient estimation of the treatment effects. The Cy2 reference channel was used as a covariate in the normalization model to avoid skewness of the residual distribution. Its inclusion improved the detection of DE proteins in the second stage. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/36959 Fernandez, Elmer Andres; Girotti, Maria Romina; López del Olmo, Juan A. ; Llera, Andrea Sabina; Podhajcer, Osvaldo Luis; et al.; Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: Assessing experimental effects in a melanoma cell study; Oxford University Press; Bioinformatics (Oxford, England); 24; 23; 12-2008; 2706-2712 1367-4803 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/36959 |
identifier_str_mv |
Fernandez, Elmer Andres; Girotti, Maria Romina; López del Olmo, Juan A. ; Llera, Andrea Sabina; Podhajcer, Osvaldo Luis; et al.; Improving 2D-DIGE protein expression analysis by two-stage linear mixed models: Assessing experimental effects in a melanoma cell study; Oxford University Press; Bioinformatics (Oxford, England); 24; 23; 12-2008; 2706-2712 1367-4803 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/article/24/23/2706/179880 info:eu-repo/semantics/altIdentifier/doi/10.1093/bioinformatics/btn508 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614237307011072 |
score |
13.070432 |