Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae
- Autores
- Soler Bistue, Alfonso J. C.; Aguilar Pierlé, Sebastián; Garcia Garcerá, Marc; Val, Marie Eve; Sismeiro, Odile; Varet, Hugo; Sieira, Rodrigo; Krin, Evelyne; Skovgaard, Ole; Comerci, Diego José; Rocha, Eduardo P. C.; Mazel, Didier
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In fast-growing bacteria, the genomic location of ribosomal protein (RP) genes is biased towards the replication origin (oriC). This trait allows optimizing their expression during exponential phase since oriC neighboring regions are in higher dose due to multifork replication. Relocation of s10-spc-α locus (S10), which codes for most of the RP, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction on its dosage, its expression, and bacterial growth rate. However, a mechanism linking S10 dosage to cell physiology has still not been determined.We hypothesized that S10 dosage perturbations impact protein synthesis capacity. Strikingly, we observed that in Vibrio cholerae, protein production capacity was independent of S10 position. Deep sequencing revealed that S10 relocation altered chromosomal replication dynamics and genome-wide transcription. Such changes increased as a function of oriC-S10 distance. Since RP constitutes a large proportion of cell mass, lower S10 dosage could lead to changes in macromolecular crowding, impacting cell physiology. Accordingly, cytoplasm fluidity was higher in mutants where S10 is most distant from oriC. In hyperosmotic conditions, when crowding differences are minimized, the growth rate and replication dynamics were highly alleviated in these strains.The genomic location of RP genes ensures its optimal dosage. However, besides of its essential function in translation, their genomic position sustains an optimal macromolecular crowding essential for maximizing growth. Hence, this could be another mechanism coordinating DNA replication to bacterial growth.
Fil: Soler Bistue, Alfonso J. C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina
Fil: Aguilar Pierlé, Sebastián. Institut Pasteur; Francia
Fil: Garcia Garcerá, Marc. Institut Pasteur; Francia
Fil: Val, Marie Eve. Institut Pasteur; Francia
Fil: Sismeiro, Odile. Institut Pasteur; Francia
Fil: Varet, Hugo. Institut Pasteur; Francia
Fil: Sieira, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: Krin, Evelyne. Institut Pasteur; Francia
Fil: Skovgaard, Ole. Roskilde Universitet; Dinamarca
Fil: Comerci, Diego José. Universidad Nacional de San Martin. Instituto de Investigaciones Biotecnologicas. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto de Investigaciones Biotecnologicas.; Argentina
Fil: Rocha, Eduardo P. C.. Institut Pasteur; Francia
Fil: Mazel, Didier. Institut Pasteur; Francia - Materia
-
VIBRIO CHOLERAE
RIBOSOMAL PROTEINS
GROWTH RATE
GENOMICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/112160
Ver los metadatos del registro completo
| id |
CONICETDig_cbc1553f952baffb70819b953eb1671e |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/112160 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio choleraeSoler Bistue, Alfonso J. C.Aguilar Pierlé, SebastiánGarcia Garcerá, MarcVal, Marie EveSismeiro, OdileVaret, HugoSieira, RodrigoKrin, EvelyneSkovgaard, OleComerci, Diego JoséRocha, Eduardo P. C.Mazel, DidierVIBRIO CHOLERAERIBOSOMAL PROTEINSGROWTH RATEGENOMICShttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1In fast-growing bacteria, the genomic location of ribosomal protein (RP) genes is biased towards the replication origin (oriC). This trait allows optimizing their expression during exponential phase since oriC neighboring regions are in higher dose due to multifork replication. Relocation of s10-spc-α locus (S10), which codes for most of the RP, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction on its dosage, its expression, and bacterial growth rate. However, a mechanism linking S10 dosage to cell physiology has still not been determined.We hypothesized that S10 dosage perturbations impact protein synthesis capacity. Strikingly, we observed that in Vibrio cholerae, protein production capacity was independent of S10 position. Deep sequencing revealed that S10 relocation altered chromosomal replication dynamics and genome-wide transcription. Such changes increased as a function of oriC-S10 distance. Since RP constitutes a large proportion of cell mass, lower S10 dosage could lead to changes in macromolecular crowding, impacting cell physiology. Accordingly, cytoplasm fluidity was higher in mutants where S10 is most distant from oriC. In hyperosmotic conditions, when crowding differences are minimized, the growth rate and replication dynamics were highly alleviated in these strains.The genomic location of RP genes ensures its optimal dosage. However, besides of its essential function in translation, their genomic position sustains an optimal macromolecular crowding essential for maximizing growth. Hence, this could be another mechanism coordinating DNA replication to bacterial growth.Fil: Soler Bistue, Alfonso J. C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Aguilar Pierlé, Sebastián. Institut Pasteur; FranciaFil: Garcia Garcerá, Marc. Institut Pasteur; FranciaFil: Val, Marie Eve. Institut Pasteur; FranciaFil: Sismeiro, Odile. Institut Pasteur; FranciaFil: Varet, Hugo. Institut Pasteur; FranciaFil: Sieira, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Krin, Evelyne. Institut Pasteur; FranciaFil: Skovgaard, Ole. Roskilde Universitet; DinamarcaFil: Comerci, Diego José. Universidad Nacional de San Martin. Instituto de Investigaciones Biotecnologicas. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto de Investigaciones Biotecnologicas.; ArgentinaFil: Rocha, Eduardo P. C.. Institut Pasteur; FranciaFil: Mazel, Didier. Institut Pasteur; FranciaBioMed Central2020-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112160Soler Bistue, Alfonso J. C.; Aguilar Pierlé, Sebastián; Garcia Garcerá, Marc; Val, Marie Eve; Sismeiro, Odile; et al.; Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae; BioMed Central; Bmc Biology; 18; 1; 4-2020; 1-181741-7007CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-020-00777-5info:eu-repo/semantics/altIdentifier/doi/10.1186/s12915-020-00777-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:12:13Zoai:ri.conicet.gov.ar:11336/112160instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:12:13.566CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae |
| title |
Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae |
| spellingShingle |
Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae Soler Bistue, Alfonso J. C. VIBRIO CHOLERAE RIBOSOMAL PROTEINS GROWTH RATE GENOMICS |
| title_short |
Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae |
| title_full |
Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae |
| title_fullStr |
Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae |
| title_full_unstemmed |
Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae |
| title_sort |
Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae |
| dc.creator.none.fl_str_mv |
Soler Bistue, Alfonso J. C. Aguilar Pierlé, Sebastián Garcia Garcerá, Marc Val, Marie Eve Sismeiro, Odile Varet, Hugo Sieira, Rodrigo Krin, Evelyne Skovgaard, Ole Comerci, Diego José Rocha, Eduardo P. C. Mazel, Didier |
| author |
Soler Bistue, Alfonso J. C. |
| author_facet |
Soler Bistue, Alfonso J. C. Aguilar Pierlé, Sebastián Garcia Garcerá, Marc Val, Marie Eve Sismeiro, Odile Varet, Hugo Sieira, Rodrigo Krin, Evelyne Skovgaard, Ole Comerci, Diego José Rocha, Eduardo P. C. Mazel, Didier |
| author_role |
author |
| author2 |
Aguilar Pierlé, Sebastián Garcia Garcerá, Marc Val, Marie Eve Sismeiro, Odile Varet, Hugo Sieira, Rodrigo Krin, Evelyne Skovgaard, Ole Comerci, Diego José Rocha, Eduardo P. C. Mazel, Didier |
| author2_role |
author author author author author author author author author author author |
| dc.subject.none.fl_str_mv |
VIBRIO CHOLERAE RIBOSOMAL PROTEINS GROWTH RATE GENOMICS |
| topic |
VIBRIO CHOLERAE RIBOSOMAL PROTEINS GROWTH RATE GENOMICS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In fast-growing bacteria, the genomic location of ribosomal protein (RP) genes is biased towards the replication origin (oriC). This trait allows optimizing their expression during exponential phase since oriC neighboring regions are in higher dose due to multifork replication. Relocation of s10-spc-α locus (S10), which codes for most of the RP, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction on its dosage, its expression, and bacterial growth rate. However, a mechanism linking S10 dosage to cell physiology has still not been determined.We hypothesized that S10 dosage perturbations impact protein synthesis capacity. Strikingly, we observed that in Vibrio cholerae, protein production capacity was independent of S10 position. Deep sequencing revealed that S10 relocation altered chromosomal replication dynamics and genome-wide transcription. Such changes increased as a function of oriC-S10 distance. Since RP constitutes a large proportion of cell mass, lower S10 dosage could lead to changes in macromolecular crowding, impacting cell physiology. Accordingly, cytoplasm fluidity was higher in mutants where S10 is most distant from oriC. In hyperosmotic conditions, when crowding differences are minimized, the growth rate and replication dynamics were highly alleviated in these strains.The genomic location of RP genes ensures its optimal dosage. However, besides of its essential function in translation, their genomic position sustains an optimal macromolecular crowding essential for maximizing growth. Hence, this could be another mechanism coordinating DNA replication to bacterial growth. Fil: Soler Bistue, Alfonso J. C.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina Fil: Aguilar Pierlé, Sebastián. Institut Pasteur; Francia Fil: Garcia Garcerá, Marc. Institut Pasteur; Francia Fil: Val, Marie Eve. Institut Pasteur; Francia Fil: Sismeiro, Odile. Institut Pasteur; Francia Fil: Varet, Hugo. Institut Pasteur; Francia Fil: Sieira, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina Fil: Krin, Evelyne. Institut Pasteur; Francia Fil: Skovgaard, Ole. Roskilde Universitet; Dinamarca Fil: Comerci, Diego José. Universidad Nacional de San Martin. Instituto de Investigaciones Biotecnologicas. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Pque. Centenario. Instituto de Investigaciones Biotecnologicas.; Argentina Fil: Rocha, Eduardo P. C.. Institut Pasteur; Francia Fil: Mazel, Didier. Institut Pasteur; Francia |
| description |
In fast-growing bacteria, the genomic location of ribosomal protein (RP) genes is biased towards the replication origin (oriC). This trait allows optimizing their expression during exponential phase since oriC neighboring regions are in higher dose due to multifork replication. Relocation of s10-spc-α locus (S10), which codes for most of the RP, to ectopic genomic positions shows that its relative distance to the oriC correlates to a reduction on its dosage, its expression, and bacterial growth rate. However, a mechanism linking S10 dosage to cell physiology has still not been determined.We hypothesized that S10 dosage perturbations impact protein synthesis capacity. Strikingly, we observed that in Vibrio cholerae, protein production capacity was independent of S10 position. Deep sequencing revealed that S10 relocation altered chromosomal replication dynamics and genome-wide transcription. Such changes increased as a function of oriC-S10 distance. Since RP constitutes a large proportion of cell mass, lower S10 dosage could lead to changes in macromolecular crowding, impacting cell physiology. Accordingly, cytoplasm fluidity was higher in mutants where S10 is most distant from oriC. In hyperosmotic conditions, when crowding differences are minimized, the growth rate and replication dynamics were highly alleviated in these strains.The genomic location of RP genes ensures its optimal dosage. However, besides of its essential function in translation, their genomic position sustains an optimal macromolecular crowding essential for maximizing growth. Hence, this could be another mechanism coordinating DNA replication to bacterial growth. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/112160 Soler Bistue, Alfonso J. C.; Aguilar Pierlé, Sebastián; Garcia Garcerá, Marc; Val, Marie Eve; Sismeiro, Odile; et al.; Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae; BioMed Central; Bmc Biology; 18; 1; 4-2020; 1-18 1741-7007 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/112160 |
| identifier_str_mv |
Soler Bistue, Alfonso J. C.; Aguilar Pierlé, Sebastián; Garcia Garcerá, Marc; Val, Marie Eve; Sismeiro, Odile; et al.; Macromolecular crowding links ribosomal protein gene dosage to growth rate in Vibrio cholerae; BioMed Central; Bmc Biology; 18; 1; 4-2020; 1-18 1741-7007 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-020-00777-5 info:eu-repo/semantics/altIdentifier/doi/10.1186/s12915-020-00777-5 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
BioMed Central |
| publisher.none.fl_str_mv |
BioMed Central |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781512012267520 |
| score |
12.982451 |