Medición de la producción de pares de jets a 13 TeV y uso de redes neuronales adversarias para identificar jets-W
- Autores
- Marceca, Gino
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- tesis doctoral
- Estado
- versión publicada
- Colaborador/a o director/a de tesis
- Piegaia, Ricardo Nestor
Otero y Garzon, Gustavo Javier - Descripción
- En esta tesis se presenta la medición de la sección eficaz de masa invariante entre pares de jets producidos en colisiones protón-protón a una energía de centro de masa de 13 TeV. Los datos fueron colectados por el detector ATLAS en el Gran Colisionador de Hadrones del Laboratorio CERN durante el año 2015. Las mediciones de la sección eficaz fueron comparados cuantitativamente con las predicciones teóricas del Modelo Estándar (ME) a orden siguiente al dominante (NLO) corregidas por efectos no pertubativos. Estos estudios ponen a prueba el ME por posible evidencia de nueva física. A su vez, la producción de jets contiene información acerca de la distribución partónica dentro del protón y de la constante de acoplamiento fuerte ↵s, lo que permite mejorar el conocimiento de QCD a una escala de energía nunca antes alcanzada. Los resultados xperimentales mostraron estar en acuerdo con las predicciones teóricas, validando por primera vez el ME a 13 TeV en lo que respecta a la producción de pares de jets. Por otro lado, se desarrollaron técnicas de aprendizaje automático para la identificación de jets provenientes de bosones W en medio de un fondo dominante de jets de QCD, tarea fundamental para la búsqueda de partículas masivas producto de nueva física o para la mejora de precisión de las propiedades del Higgs. El modelo propuesto en esta tesis está basado en redes neuronales adversarias, el cual permite lograr un clasificador no correlacionado con ciertos observables físicos de interés, como la masa del jet. Esto es importante pues ciertas búsquedas de nueva física en ATLAS son sensibles a efectos no deseados introducidos por la correlación entre la variable discriminante y la masa del jet, lo que resulta en la reducción de la significancia estadística del analisis. Estudios realizados en simulaciones Monte Carlo muestran mejoras significativas respecto a otros métodos analíticos y de multivariable utilizados tradicionalmente en ATLAS, resultando por lo tanto prometedor para futuras búsquedas de nueva física.
Fil: Marceca, Gino. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
Jets
Redes Neuronales
Seccion Eficaz
Atlas - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/85689
Ver los metadatos del registro completo
id |
CONICETDig_cb5bac99134d5b7c6de2b35435bbf5d7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/85689 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Medición de la producción de pares de jets a 13 TeV y uso de redes neuronales adversarias para identificar jets-WMarceca, GinoJetsRedes NeuronalesSeccion EficazAtlashttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1En esta tesis se presenta la medición de la sección eficaz de masa invariante entre pares de jets producidos en colisiones protón-protón a una energía de centro de masa de 13 TeV. Los datos fueron colectados por el detector ATLAS en el Gran Colisionador de Hadrones del Laboratorio CERN durante el año 2015. Las mediciones de la sección eficaz fueron comparados cuantitativamente con las predicciones teóricas del Modelo Estándar (ME) a orden siguiente al dominante (NLO) corregidas por efectos no pertubativos. Estos estudios ponen a prueba el ME por posible evidencia de nueva física. A su vez, la producción de jets contiene información acerca de la distribución partónica dentro del protón y de la constante de acoplamiento fuerte ↵s, lo que permite mejorar el conocimiento de QCD a una escala de energía nunca antes alcanzada. Los resultados xperimentales mostraron estar en acuerdo con las predicciones teóricas, validando por primera vez el ME a 13 TeV en lo que respecta a la producción de pares de jets. Por otro lado, se desarrollaron técnicas de aprendizaje automático para la identificación de jets provenientes de bosones W en medio de un fondo dominante de jets de QCD, tarea fundamental para la búsqueda de partículas masivas producto de nueva física o para la mejora de precisión de las propiedades del Higgs. El modelo propuesto en esta tesis está basado en redes neuronales adversarias, el cual permite lograr un clasificador no correlacionado con ciertos observables físicos de interés, como la masa del jet. Esto es importante pues ciertas búsquedas de nueva física en ATLAS son sensibles a efectos no deseados introducidos por la correlación entre la variable discriminante y la masa del jet, lo que resulta en la reducción de la significancia estadística del analisis. Estudios realizados en simulaciones Monte Carlo muestran mejoras significativas respecto a otros métodos analíticos y de multivariable utilizados tradicionalmente en ATLAS, resultando por lo tanto prometedor para futuras búsquedas de nueva física.Fil: Marceca, Gino. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaPiegaia, Ricardo NestorOtero y Garzon, Gustavo Javier2019-03-12info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85689Marceca, Gino; Piegaia, Ricardo Nestor; Otero y Garzon, Gustavo Javier; Medición de la producción de pares de jets a 13 TeV y uso de redes neuronales adversarias para identificar jets-W; 12-3-2019CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:23Zoai:ri.conicet.gov.ar:11336/85689instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:24.071CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Medición de la producción de pares de jets a 13 TeV y uso de redes neuronales adversarias para identificar jets-W |
title |
Medición de la producción de pares de jets a 13 TeV y uso de redes neuronales adversarias para identificar jets-W |
spellingShingle |
Medición de la producción de pares de jets a 13 TeV y uso de redes neuronales adversarias para identificar jets-W Marceca, Gino Jets Redes Neuronales Seccion Eficaz Atlas |
title_short |
Medición de la producción de pares de jets a 13 TeV y uso de redes neuronales adversarias para identificar jets-W |
title_full |
Medición de la producción de pares de jets a 13 TeV y uso de redes neuronales adversarias para identificar jets-W |
title_fullStr |
Medición de la producción de pares de jets a 13 TeV y uso de redes neuronales adversarias para identificar jets-W |
title_full_unstemmed |
Medición de la producción de pares de jets a 13 TeV y uso de redes neuronales adversarias para identificar jets-W |
title_sort |
Medición de la producción de pares de jets a 13 TeV y uso de redes neuronales adversarias para identificar jets-W |
dc.creator.none.fl_str_mv |
Marceca, Gino |
author |
Marceca, Gino |
author_facet |
Marceca, Gino |
author_role |
author |
dc.contributor.none.fl_str_mv |
Piegaia, Ricardo Nestor Otero y Garzon, Gustavo Javier |
dc.subject.none.fl_str_mv |
Jets Redes Neuronales Seccion Eficaz Atlas |
topic |
Jets Redes Neuronales Seccion Eficaz Atlas |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
En esta tesis se presenta la medición de la sección eficaz de masa invariante entre pares de jets producidos en colisiones protón-protón a una energía de centro de masa de 13 TeV. Los datos fueron colectados por el detector ATLAS en el Gran Colisionador de Hadrones del Laboratorio CERN durante el año 2015. Las mediciones de la sección eficaz fueron comparados cuantitativamente con las predicciones teóricas del Modelo Estándar (ME) a orden siguiente al dominante (NLO) corregidas por efectos no pertubativos. Estos estudios ponen a prueba el ME por posible evidencia de nueva física. A su vez, la producción de jets contiene información acerca de la distribución partónica dentro del protón y de la constante de acoplamiento fuerte ↵s, lo que permite mejorar el conocimiento de QCD a una escala de energía nunca antes alcanzada. Los resultados xperimentales mostraron estar en acuerdo con las predicciones teóricas, validando por primera vez el ME a 13 TeV en lo que respecta a la producción de pares de jets. Por otro lado, se desarrollaron técnicas de aprendizaje automático para la identificación de jets provenientes de bosones W en medio de un fondo dominante de jets de QCD, tarea fundamental para la búsqueda de partículas masivas producto de nueva física o para la mejora de precisión de las propiedades del Higgs. El modelo propuesto en esta tesis está basado en redes neuronales adversarias, el cual permite lograr un clasificador no correlacionado con ciertos observables físicos de interés, como la masa del jet. Esto es importante pues ciertas búsquedas de nueva física en ATLAS son sensibles a efectos no deseados introducidos por la correlación entre la variable discriminante y la masa del jet, lo que resulta en la reducción de la significancia estadística del analisis. Estudios realizados en simulaciones Monte Carlo muestran mejoras significativas respecto a otros métodos analíticos y de multivariable utilizados tradicionalmente en ATLAS, resultando por lo tanto prometedor para futuras búsquedas de nueva física. Fil: Marceca, Gino. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
En esta tesis se presenta la medición de la sección eficaz de masa invariante entre pares de jets producidos en colisiones protón-protón a una energía de centro de masa de 13 TeV. Los datos fueron colectados por el detector ATLAS en el Gran Colisionador de Hadrones del Laboratorio CERN durante el año 2015. Las mediciones de la sección eficaz fueron comparados cuantitativamente con las predicciones teóricas del Modelo Estándar (ME) a orden siguiente al dominante (NLO) corregidas por efectos no pertubativos. Estos estudios ponen a prueba el ME por posible evidencia de nueva física. A su vez, la producción de jets contiene información acerca de la distribución partónica dentro del protón y de la constante de acoplamiento fuerte ↵s, lo que permite mejorar el conocimiento de QCD a una escala de energía nunca antes alcanzada. Los resultados xperimentales mostraron estar en acuerdo con las predicciones teóricas, validando por primera vez el ME a 13 TeV en lo que respecta a la producción de pares de jets. Por otro lado, se desarrollaron técnicas de aprendizaje automático para la identificación de jets provenientes de bosones W en medio de un fondo dominante de jets de QCD, tarea fundamental para la búsqueda de partículas masivas producto de nueva física o para la mejora de precisión de las propiedades del Higgs. El modelo propuesto en esta tesis está basado en redes neuronales adversarias, el cual permite lograr un clasificador no correlacionado con ciertos observables físicos de interés, como la masa del jet. Esto es importante pues ciertas búsquedas de nueva física en ATLAS son sensibles a efectos no deseados introducidos por la correlación entre la variable discriminante y la masa del jet, lo que resulta en la reducción de la significancia estadística del analisis. Estudios realizados en simulaciones Monte Carlo muestran mejoras significativas respecto a otros métodos analíticos y de multivariable utilizados tradicionalmente en ATLAS, resultando por lo tanto prometedor para futuras búsquedas de nueva física. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-03-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/85689 Marceca, Gino; Piegaia, Ricardo Nestor; Otero y Garzon, Gustavo Javier; Medición de la producción de pares de jets a 13 TeV y uso de redes neuronales adversarias para identificar jets-W; 12-3-2019 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/85689 |
identifier_str_mv |
Marceca, Gino; Piegaia, Ricardo Nestor; Otero y Garzon, Gustavo Javier; Medición de la producción de pares de jets a 13 TeV y uso de redes neuronales adversarias para identificar jets-W; 12-3-2019 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613503321636864 |
score |
13.070432 |