Novel automatic scorpion-detection and -recognition system based on machine-learning techniques
- Autores
- Giambelluca, Francisco Luis; Cappelletti, Marcelo Ángel; Osio, Jorge; Giambelluca, Luis Alberto
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- All species of scorpions have the ability to inoculate venom, some of them even with the possibility of killing a human. Therefore, early detection and identification is essential to minimize scorpion stings. In this paper, we propose a novel automatic system for the detection and recognition of scorpions using computer vision and machine learning approaches. Two complementary image processing techniques were used for the proposed detection method in order to accurately and reliably detect the presence of scorpions. The first based on the fluorescence characteristics of scorpions when are exposed to ultraviolet (UV) light, and the second on the shape features of the scorpions. On the other hand, three models based on machine learning algorithms for the image recognition and classification of scorpions have been compared. In particular, the three species of scorpions found in La Plata city (Argentina): Bothriurus bonariensis (of no sanitary importance), and Tityus trivittatus and Tityus confluence (both of sanitary importance), have been researched using the Local Binary Pattern Histogram (LBPH) algorithm and deep neural networks with transfer learning (DNN with TL) and data augmentation (DNN with TL and DA) approaches. Confusion matrix and Receiver Operating Characteristic (ROC) curve were used for evaluating the quality of these models. Results obtained show that the DNN with TL and DA model is the most efficient model to simultaneously differentiate between Tityus and Bothriurus (for health security) and between Tityus trivittatus and Tityus confluence (for biological research purposes).
Fil: Giambelluca, Francisco Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
Fil: Cappelletti, Marcelo Ángel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina. Universidad Nacional Arturo Jauretche; Argentina
Fil: Osio, Jorge. Universidad Nacional Arturo Jauretche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
Fil: Giambelluca, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentina - Materia
-
DATA AUGMENTATION
LOCAL BINARY PATTERN
MACHINE LEARNING
SCORPION IMAGE CLASSIFICATION
TRANSFER LEARNING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/140751
Ver los metadatos del registro completo
id |
CONICETDig_cb26a41450f468fbe999f04346e8676b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/140751 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Novel automatic scorpion-detection and -recognition system based on machine-learning techniquesGiambelluca, Francisco LuisCappelletti, Marcelo ÁngelOsio, JorgeGiambelluca, Luis AlbertoDATA AUGMENTATIONLOCAL BINARY PATTERNMACHINE LEARNINGSCORPION IMAGE CLASSIFICATIONTRANSFER LEARNINGhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2All species of scorpions have the ability to inoculate venom, some of them even with the possibility of killing a human. Therefore, early detection and identification is essential to minimize scorpion stings. In this paper, we propose a novel automatic system for the detection and recognition of scorpions using computer vision and machine learning approaches. Two complementary image processing techniques were used for the proposed detection method in order to accurately and reliably detect the presence of scorpions. The first based on the fluorescence characteristics of scorpions when are exposed to ultraviolet (UV) light, and the second on the shape features of the scorpions. On the other hand, three models based on machine learning algorithms for the image recognition and classification of scorpions have been compared. In particular, the three species of scorpions found in La Plata city (Argentina): Bothriurus bonariensis (of no sanitary importance), and Tityus trivittatus and Tityus confluence (both of sanitary importance), have been researched using the Local Binary Pattern Histogram (LBPH) algorithm and deep neural networks with transfer learning (DNN with TL) and data augmentation (DNN with TL and DA) approaches. Confusion matrix and Receiver Operating Characteristic (ROC) curve were used for evaluating the quality of these models. Results obtained show that the DNN with TL and DA model is the most efficient model to simultaneously differentiate between Tityus and Bothriurus (for health security) and between Tityus trivittatus and Tityus confluence (for biological research purposes).Fil: Giambelluca, Francisco Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Cappelletti, Marcelo Ángel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina. Universidad Nacional Arturo Jauretche; ArgentinaFil: Osio, Jorge. Universidad Nacional Arturo Jauretche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Giambelluca, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaIOP Publishing2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/140751Giambelluca, Francisco Luis; Cappelletti, Marcelo Ángel; Osio, Jorge; Giambelluca, Luis Alberto; Novel automatic scorpion-detection and -recognition system based on machine-learning techniques; IOP Publishing; Machine Learning: Science and Technology; 2; 12-2020; 1-162632-2153CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2632-2153/abd51dinfo:eu-repo/semantics/altIdentifier/doi/10.1088/2632-2153/abd51dinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:01:00Zoai:ri.conicet.gov.ar:11336/140751instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:01:00.569CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Novel automatic scorpion-detection and -recognition system based on machine-learning techniques |
title |
Novel automatic scorpion-detection and -recognition system based on machine-learning techniques |
spellingShingle |
Novel automatic scorpion-detection and -recognition system based on machine-learning techniques Giambelluca, Francisco Luis DATA AUGMENTATION LOCAL BINARY PATTERN MACHINE LEARNING SCORPION IMAGE CLASSIFICATION TRANSFER LEARNING |
title_short |
Novel automatic scorpion-detection and -recognition system based on machine-learning techniques |
title_full |
Novel automatic scorpion-detection and -recognition system based on machine-learning techniques |
title_fullStr |
Novel automatic scorpion-detection and -recognition system based on machine-learning techniques |
title_full_unstemmed |
Novel automatic scorpion-detection and -recognition system based on machine-learning techniques |
title_sort |
Novel automatic scorpion-detection and -recognition system based on machine-learning techniques |
dc.creator.none.fl_str_mv |
Giambelluca, Francisco Luis Cappelletti, Marcelo Ángel Osio, Jorge Giambelluca, Luis Alberto |
author |
Giambelluca, Francisco Luis |
author_facet |
Giambelluca, Francisco Luis Cappelletti, Marcelo Ángel Osio, Jorge Giambelluca, Luis Alberto |
author_role |
author |
author2 |
Cappelletti, Marcelo Ángel Osio, Jorge Giambelluca, Luis Alberto |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DATA AUGMENTATION LOCAL BINARY PATTERN MACHINE LEARNING SCORPION IMAGE CLASSIFICATION TRANSFER LEARNING |
topic |
DATA AUGMENTATION LOCAL BINARY PATTERN MACHINE LEARNING SCORPION IMAGE CLASSIFICATION TRANSFER LEARNING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
All species of scorpions have the ability to inoculate venom, some of them even with the possibility of killing a human. Therefore, early detection and identification is essential to minimize scorpion stings. In this paper, we propose a novel automatic system for the detection and recognition of scorpions using computer vision and machine learning approaches. Two complementary image processing techniques were used for the proposed detection method in order to accurately and reliably detect the presence of scorpions. The first based on the fluorescence characteristics of scorpions when are exposed to ultraviolet (UV) light, and the second on the shape features of the scorpions. On the other hand, three models based on machine learning algorithms for the image recognition and classification of scorpions have been compared. In particular, the three species of scorpions found in La Plata city (Argentina): Bothriurus bonariensis (of no sanitary importance), and Tityus trivittatus and Tityus confluence (both of sanitary importance), have been researched using the Local Binary Pattern Histogram (LBPH) algorithm and deep neural networks with transfer learning (DNN with TL) and data augmentation (DNN with TL and DA) approaches. Confusion matrix and Receiver Operating Characteristic (ROC) curve were used for evaluating the quality of these models. Results obtained show that the DNN with TL and DA model is the most efficient model to simultaneously differentiate between Tityus and Bothriurus (for health security) and between Tityus trivittatus and Tityus confluence (for biological research purposes). Fil: Giambelluca, Francisco Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina Fil: Cappelletti, Marcelo Ángel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina. Universidad Nacional Arturo Jauretche; Argentina Fil: Osio, Jorge. Universidad Nacional Arturo Jauretche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina Fil: Giambelluca, Luis Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentina |
description |
All species of scorpions have the ability to inoculate venom, some of them even with the possibility of killing a human. Therefore, early detection and identification is essential to minimize scorpion stings. In this paper, we propose a novel automatic system for the detection and recognition of scorpions using computer vision and machine learning approaches. Two complementary image processing techniques were used for the proposed detection method in order to accurately and reliably detect the presence of scorpions. The first based on the fluorescence characteristics of scorpions when are exposed to ultraviolet (UV) light, and the second on the shape features of the scorpions. On the other hand, three models based on machine learning algorithms for the image recognition and classification of scorpions have been compared. In particular, the three species of scorpions found in La Plata city (Argentina): Bothriurus bonariensis (of no sanitary importance), and Tityus trivittatus and Tityus confluence (both of sanitary importance), have been researched using the Local Binary Pattern Histogram (LBPH) algorithm and deep neural networks with transfer learning (DNN with TL) and data augmentation (DNN with TL and DA) approaches. Confusion matrix and Receiver Operating Characteristic (ROC) curve were used for evaluating the quality of these models. Results obtained show that the DNN with TL and DA model is the most efficient model to simultaneously differentiate between Tityus and Bothriurus (for health security) and between Tityus trivittatus and Tityus confluence (for biological research purposes). |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/140751 Giambelluca, Francisco Luis; Cappelletti, Marcelo Ángel; Osio, Jorge; Giambelluca, Luis Alberto; Novel automatic scorpion-detection and -recognition system based on machine-learning techniques; IOP Publishing; Machine Learning: Science and Technology; 2; 12-2020; 1-16 2632-2153 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/140751 |
identifier_str_mv |
Giambelluca, Francisco Luis; Cappelletti, Marcelo Ángel; Osio, Jorge; Giambelluca, Luis Alberto; Novel automatic scorpion-detection and -recognition system based on machine-learning techniques; IOP Publishing; Machine Learning: Science and Technology; 2; 12-2020; 1-16 2632-2153 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2632-2153/abd51d info:eu-repo/semantics/altIdentifier/doi/10.1088/2632-2153/abd51d |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083150014316544 |
score |
13.22299 |