Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase
- Autores
- Byléhn, Fabian; Menéndez, Cintia Anabella; Perez Lemus, Gustavo R.; Alvarado, Walter; De Pablo, Juan J.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recent efforts to repurpose drugs to combat COVID-19 have identified Remdesivir as a candidate. It acts on the RNA-dependent, RNA polymerase (RdRp) of the SARS-CoV-2 virus, a protein complex responsible for mediating replication of the virus's genome. However, its exact action mechanism, and that of other nucleotide analogue inhibitors, is not known. In this study, we examine at the molecular level the interaction of this drug and that of similar nucleotide analogue inhibitors, ribavirin and favilavir, by relying on atomistic molecular simulations and advanced sampling. By analyzing the binding free energies of these different drugs, it is found that all of them bind strongly at the active site. Surprisingly, however, ribavirin and favilavir do not bind the nucleotide on the complementary strand as effectively and seem to act by a different mechanism than remdesivir. Remdesivir exhibits similar binding interactions to the natural base adenine. Moreover, by analyzing remdesivir at downstream positions of the RNA, we also find that, consistent with a "delayed"termination mechanism, additional nucleotides can be incorporated after remdesivir is added, and its highly polar 1′-cyano group induces a set of conformational changes that can affect the normal RdRp complex function. By analyzing the fluctuations of residues that are altered by remdesivir binding, and comparing them to those induced by lethal point mutations, we find a possible secondary mechanism in which remdesivir destabilizes the protein complex and its interactions with the RNA strands.
Fil: Byléhn, Fabian. University of Chicago; Estados Unidos
Fil: Menéndez, Cintia Anabella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Perez Lemus, Gustavo R.. University of Chicago; Estados Unidos
Fil: Alvarado, Walter. University of Chicago; Estados Unidos
Fil: De Pablo, Juan J.. University of Chicago; Estados Unidos - Materia
-
Remdesivir
RdRp
SARS-CoV-2
MD simulations
COVID-19 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/149766
Ver los metadatos del registro completo
id |
CONICETDig_caffddb52862d0a4837d53dea744d23d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/149766 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA PolymeraseByléhn, FabianMenéndez, Cintia AnabellaPerez Lemus, Gustavo R.Alvarado, WalterDe Pablo, Juan J.RemdesivirRdRpSARS-CoV-2MD simulationsCOVID-19https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Recent efforts to repurpose drugs to combat COVID-19 have identified Remdesivir as a candidate. It acts on the RNA-dependent, RNA polymerase (RdRp) of the SARS-CoV-2 virus, a protein complex responsible for mediating replication of the virus's genome. However, its exact action mechanism, and that of other nucleotide analogue inhibitors, is not known. In this study, we examine at the molecular level the interaction of this drug and that of similar nucleotide analogue inhibitors, ribavirin and favilavir, by relying on atomistic molecular simulations and advanced sampling. By analyzing the binding free energies of these different drugs, it is found that all of them bind strongly at the active site. Surprisingly, however, ribavirin and favilavir do not bind the nucleotide on the complementary strand as effectively and seem to act by a different mechanism than remdesivir. Remdesivir exhibits similar binding interactions to the natural base adenine. Moreover, by analyzing remdesivir at downstream positions of the RNA, we also find that, consistent with a "delayed"termination mechanism, additional nucleotides can be incorporated after remdesivir is added, and its highly polar 1′-cyano group induces a set of conformational changes that can affect the normal RdRp complex function. By analyzing the fluctuations of residues that are altered by remdesivir binding, and comparing them to those induced by lethal point mutations, we find a possible secondary mechanism in which remdesivir destabilizes the protein complex and its interactions with the RNA strands.Fil: Byléhn, Fabian. University of Chicago; Estados UnidosFil: Menéndez, Cintia Anabella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Perez Lemus, Gustavo R.. University of Chicago; Estados UnidosFil: Alvarado, Walter. University of Chicago; Estados UnidosFil: De Pablo, Juan J.. University of Chicago; Estados UnidosAmerican Chemical Society2021-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/149766Byléhn, Fabian; Menéndez, Cintia Anabella; Perez Lemus, Gustavo R.; Alvarado, Walter; De Pablo, Juan J.; Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase; American Chemical Society; ACS Central Science; 7; 1; 1-2021; 164-1742374-79432374-7951CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acscentsci.0c01242info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:37:07Zoai:ri.conicet.gov.ar:11336/149766instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:37:07.683CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase |
title |
Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase |
spellingShingle |
Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase Byléhn, Fabian Remdesivir RdRp SARS-CoV-2 MD simulations COVID-19 |
title_short |
Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase |
title_full |
Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase |
title_fullStr |
Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase |
title_full_unstemmed |
Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase |
title_sort |
Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase |
dc.creator.none.fl_str_mv |
Byléhn, Fabian Menéndez, Cintia Anabella Perez Lemus, Gustavo R. Alvarado, Walter De Pablo, Juan J. |
author |
Byléhn, Fabian |
author_facet |
Byléhn, Fabian Menéndez, Cintia Anabella Perez Lemus, Gustavo R. Alvarado, Walter De Pablo, Juan J. |
author_role |
author |
author2 |
Menéndez, Cintia Anabella Perez Lemus, Gustavo R. Alvarado, Walter De Pablo, Juan J. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Remdesivir RdRp SARS-CoV-2 MD simulations COVID-19 |
topic |
Remdesivir RdRp SARS-CoV-2 MD simulations COVID-19 |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recent efforts to repurpose drugs to combat COVID-19 have identified Remdesivir as a candidate. It acts on the RNA-dependent, RNA polymerase (RdRp) of the SARS-CoV-2 virus, a protein complex responsible for mediating replication of the virus's genome. However, its exact action mechanism, and that of other nucleotide analogue inhibitors, is not known. In this study, we examine at the molecular level the interaction of this drug and that of similar nucleotide analogue inhibitors, ribavirin and favilavir, by relying on atomistic molecular simulations and advanced sampling. By analyzing the binding free energies of these different drugs, it is found that all of them bind strongly at the active site. Surprisingly, however, ribavirin and favilavir do not bind the nucleotide on the complementary strand as effectively and seem to act by a different mechanism than remdesivir. Remdesivir exhibits similar binding interactions to the natural base adenine. Moreover, by analyzing remdesivir at downstream positions of the RNA, we also find that, consistent with a "delayed"termination mechanism, additional nucleotides can be incorporated after remdesivir is added, and its highly polar 1′-cyano group induces a set of conformational changes that can affect the normal RdRp complex function. By analyzing the fluctuations of residues that are altered by remdesivir binding, and comparing them to those induced by lethal point mutations, we find a possible secondary mechanism in which remdesivir destabilizes the protein complex and its interactions with the RNA strands. Fil: Byléhn, Fabian. University of Chicago; Estados Unidos Fil: Menéndez, Cintia Anabella. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Perez Lemus, Gustavo R.. University of Chicago; Estados Unidos Fil: Alvarado, Walter. University of Chicago; Estados Unidos Fil: De Pablo, Juan J.. University of Chicago; Estados Unidos |
description |
Recent efforts to repurpose drugs to combat COVID-19 have identified Remdesivir as a candidate. It acts on the RNA-dependent, RNA polymerase (RdRp) of the SARS-CoV-2 virus, a protein complex responsible for mediating replication of the virus's genome. However, its exact action mechanism, and that of other nucleotide analogue inhibitors, is not known. In this study, we examine at the molecular level the interaction of this drug and that of similar nucleotide analogue inhibitors, ribavirin and favilavir, by relying on atomistic molecular simulations and advanced sampling. By analyzing the binding free energies of these different drugs, it is found that all of them bind strongly at the active site. Surprisingly, however, ribavirin and favilavir do not bind the nucleotide on the complementary strand as effectively and seem to act by a different mechanism than remdesivir. Remdesivir exhibits similar binding interactions to the natural base adenine. Moreover, by analyzing remdesivir at downstream positions of the RNA, we also find that, consistent with a "delayed"termination mechanism, additional nucleotides can be incorporated after remdesivir is added, and its highly polar 1′-cyano group induces a set of conformational changes that can affect the normal RdRp complex function. By analyzing the fluctuations of residues that are altered by remdesivir binding, and comparing them to those induced by lethal point mutations, we find a possible secondary mechanism in which remdesivir destabilizes the protein complex and its interactions with the RNA strands. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/149766 Byléhn, Fabian; Menéndez, Cintia Anabella; Perez Lemus, Gustavo R.; Alvarado, Walter; De Pablo, Juan J.; Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase; American Chemical Society; ACS Central Science; 7; 1; 1-2021; 164-174 2374-7943 2374-7951 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/149766 |
identifier_str_mv |
Byléhn, Fabian; Menéndez, Cintia Anabella; Perez Lemus, Gustavo R.; Alvarado, Walter; De Pablo, Juan J.; Modeling the Binding Mechanism of Remdesivir, Favilavir, and Ribavirin to SARS-CoV-2 RNA-Dependent RNA Polymerase; American Chemical Society; ACS Central Science; 7; 1; 1-2021; 164-174 2374-7943 2374-7951 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/acscentsci.0c01242 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083492847288320 |
score |
13.22299 |