Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys

Autores
Gómez Cortés, J.F.; Fuster, Valeria de Los Angeles; Pérez Cerrato, M.; Lorenzo, P.; Ruiz Larrea, I.; Breczewski, T.; Nó, M. L.; San Juan, J. M.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Superelasticity is a characteristic thermomechanical property in shape memory alloys (SMA), which is due to a reversible stress-induced martensitic transformation. Nano-compression experiments made possible the study of this property in Cu–Al–Ni SMA micropillars, showing an outstanding ultra-high mechanical damping capacity reproducible for thousands of cycles and reliable over the years. This scenario motivated the present work, where a comparative study of the damping capacity on four copper-based SMA: Cu–Al–Ni, Cu–Al–Be, Cu–Al–Ni–Be and Cu–Al–Ni–Ga is approached. For this purpose, [001] oriented single-crystal micropillars of comparable dimensions (around 1 µm in diameter) were milled by focused ion beam technique. All micropillars were cycled up to two hundred superelastic cycles, exhibiting a remarkable reproducibility. The damping capacity was evaluated through the dimensionless loss factor η, calculated for each superelastic cycle, representing the dissipated energy per cycle and unit of volume. The calculated loss factor was averaged between three micro-pillars of each alloy, obtaining the following results: Cu–Al–Ni η = 0.20 ± 0.01; Cu–Al–Be η = 0.100 ± 0.006; Cu–Al–Ni–Be η = 0.072 ± 0.004 and Cu–Al–Ni–Ga η = 0.042 ± 0.002. These four alloys exhibit an intrinsic superelastic damping capacity and offer a wide loss factor band, which constitutes a reference for engineering, since this kind of micro/nano structures can potentially be integrated not only as sensors and actuators but also as dampers in the design of MEMS to improve their reliability. In addition, the study of the dependence of the superelastic loss factor on the diameter of the pillar was approached in the Cu–Al–Ni–Ga alloy, and here we demonstrate that there is a size effect on damping at the nanoscale.
Fil: Gómez Cortés, J.F.. Universidad del País Vasco; España
Fil: Fuster, Valeria de Los Angeles. Universidad del País Vasco; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Pérez Cerrato, M.. Universidad del País Vasco; España
Fil: Lorenzo, P.. Universidad del País Vasco; España
Fil: Ruiz Larrea, I.. Universidad del País Vasco; España
Fil: Breczewski, T.. Universidad del País Vasco; España
Fil: Nó, M. L.. Universidad del País Vasco; España
Fil: San Juan, J. M.. Universidad del País Vasco; España
Materia
CU-BASED ALLOYS
INTERNAL FRICTION
MECHANICAL DAMPING
NANOINDENTATION
SHAPE MEMORY ALLOYS
SIZE EFFECT
SUPERELASTICITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/182542

id CONICETDig_ca2f1e78c0b4ed06a4f286f68453d504
oai_identifier_str oai:ri.conicet.gov.ar:11336/182542
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloysGómez Cortés, J.F.Fuster, Valeria de Los AngelesPérez Cerrato, M.Lorenzo, P.Ruiz Larrea, I.Breczewski, T.Nó, M. L.San Juan, J. M.CU-BASED ALLOYSINTERNAL FRICTIONMECHANICAL DAMPINGNANOINDENTATIONSHAPE MEMORY ALLOYSSIZE EFFECTSUPERELASTICITYhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Superelasticity is a characteristic thermomechanical property in shape memory alloys (SMA), which is due to a reversible stress-induced martensitic transformation. Nano-compression experiments made possible the study of this property in Cu–Al–Ni SMA micropillars, showing an outstanding ultra-high mechanical damping capacity reproducible for thousands of cycles and reliable over the years. This scenario motivated the present work, where a comparative study of the damping capacity on four copper-based SMA: Cu–Al–Ni, Cu–Al–Be, Cu–Al–Ni–Be and Cu–Al–Ni–Ga is approached. For this purpose, [001] oriented single-crystal micropillars of comparable dimensions (around 1 µm in diameter) were milled by focused ion beam technique. All micropillars were cycled up to two hundred superelastic cycles, exhibiting a remarkable reproducibility. The damping capacity was evaluated through the dimensionless loss factor η, calculated for each superelastic cycle, representing the dissipated energy per cycle and unit of volume. The calculated loss factor was averaged between three micro-pillars of each alloy, obtaining the following results: Cu–Al–Ni η = 0.20 ± 0.01; Cu–Al–Be η = 0.100 ± 0.006; Cu–Al–Ni–Be η = 0.072 ± 0.004 and Cu–Al–Ni–Ga η = 0.042 ± 0.002. These four alloys exhibit an intrinsic superelastic damping capacity and offer a wide loss factor band, which constitutes a reference for engineering, since this kind of micro/nano structures can potentially be integrated not only as sensors and actuators but also as dampers in the design of MEMS to improve their reliability. In addition, the study of the dependence of the superelastic loss factor on the diameter of the pillar was approached in the Cu–Al–Ni–Ga alloy, and here we demonstrate that there is a size effect on damping at the nanoscale.Fil: Gómez Cortés, J.F.. Universidad del País Vasco; EspañaFil: Fuster, Valeria de Los Angeles. Universidad del País Vasco; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Pérez Cerrato, M.. Universidad del País Vasco; EspañaFil: Lorenzo, P.. Universidad del País Vasco; EspañaFil: Ruiz Larrea, I.. Universidad del País Vasco; EspañaFil: Breczewski, T.. Universidad del País Vasco; EspañaFil: Nó, M. L.. Universidad del País Vasco; EspañaFil: San Juan, J. M.. Universidad del País Vasco; EspañaElsevier Science SA2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182542Gómez Cortés, J.F.; Fuster, Valeria de Los Angeles; Pérez Cerrato, M.; Lorenzo, P.; Ruiz Larrea, I.; et al.; Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys; Elsevier Science SA; Journal of Alloys and Compounds; 883; 11-2021; 1-100925-8388CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S092583882102274Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2021.160865info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:11Zoai:ri.conicet.gov.ar:11336/182542instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:12.246CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys
title Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys
spellingShingle Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys
Gómez Cortés, J.F.
CU-BASED ALLOYS
INTERNAL FRICTION
MECHANICAL DAMPING
NANOINDENTATION
SHAPE MEMORY ALLOYS
SIZE EFFECT
SUPERELASTICITY
title_short Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys
title_full Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys
title_fullStr Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys
title_full_unstemmed Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys
title_sort Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys
dc.creator.none.fl_str_mv Gómez Cortés, J.F.
Fuster, Valeria de Los Angeles
Pérez Cerrato, M.
Lorenzo, P.
Ruiz Larrea, I.
Breczewski, T.
Nó, M. L.
San Juan, J. M.
author Gómez Cortés, J.F.
author_facet Gómez Cortés, J.F.
Fuster, Valeria de Los Angeles
Pérez Cerrato, M.
Lorenzo, P.
Ruiz Larrea, I.
Breczewski, T.
Nó, M. L.
San Juan, J. M.
author_role author
author2 Fuster, Valeria de Los Angeles
Pérez Cerrato, M.
Lorenzo, P.
Ruiz Larrea, I.
Breczewski, T.
Nó, M. L.
San Juan, J. M.
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CU-BASED ALLOYS
INTERNAL FRICTION
MECHANICAL DAMPING
NANOINDENTATION
SHAPE MEMORY ALLOYS
SIZE EFFECT
SUPERELASTICITY
topic CU-BASED ALLOYS
INTERNAL FRICTION
MECHANICAL DAMPING
NANOINDENTATION
SHAPE MEMORY ALLOYS
SIZE EFFECT
SUPERELASTICITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Superelasticity is a characteristic thermomechanical property in shape memory alloys (SMA), which is due to a reversible stress-induced martensitic transformation. Nano-compression experiments made possible the study of this property in Cu–Al–Ni SMA micropillars, showing an outstanding ultra-high mechanical damping capacity reproducible for thousands of cycles and reliable over the years. This scenario motivated the present work, where a comparative study of the damping capacity on four copper-based SMA: Cu–Al–Ni, Cu–Al–Be, Cu–Al–Ni–Be and Cu–Al–Ni–Ga is approached. For this purpose, [001] oriented single-crystal micropillars of comparable dimensions (around 1 µm in diameter) were milled by focused ion beam technique. All micropillars were cycled up to two hundred superelastic cycles, exhibiting a remarkable reproducibility. The damping capacity was evaluated through the dimensionless loss factor η, calculated for each superelastic cycle, representing the dissipated energy per cycle and unit of volume. The calculated loss factor was averaged between three micro-pillars of each alloy, obtaining the following results: Cu–Al–Ni η = 0.20 ± 0.01; Cu–Al–Be η = 0.100 ± 0.006; Cu–Al–Ni–Be η = 0.072 ± 0.004 and Cu–Al–Ni–Ga η = 0.042 ± 0.002. These four alloys exhibit an intrinsic superelastic damping capacity and offer a wide loss factor band, which constitutes a reference for engineering, since this kind of micro/nano structures can potentially be integrated not only as sensors and actuators but also as dampers in the design of MEMS to improve their reliability. In addition, the study of the dependence of the superelastic loss factor on the diameter of the pillar was approached in the Cu–Al–Ni–Ga alloy, and here we demonstrate that there is a size effect on damping at the nanoscale.
Fil: Gómez Cortés, J.F.. Universidad del País Vasco; España
Fil: Fuster, Valeria de Los Angeles. Universidad del País Vasco; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Pérez Cerrato, M.. Universidad del País Vasco; España
Fil: Lorenzo, P.. Universidad del País Vasco; España
Fil: Ruiz Larrea, I.. Universidad del País Vasco; España
Fil: Breczewski, T.. Universidad del País Vasco; España
Fil: Nó, M. L.. Universidad del País Vasco; España
Fil: San Juan, J. M.. Universidad del País Vasco; España
description Superelasticity is a characteristic thermomechanical property in shape memory alloys (SMA), which is due to a reversible stress-induced martensitic transformation. Nano-compression experiments made possible the study of this property in Cu–Al–Ni SMA micropillars, showing an outstanding ultra-high mechanical damping capacity reproducible for thousands of cycles and reliable over the years. This scenario motivated the present work, where a comparative study of the damping capacity on four copper-based SMA: Cu–Al–Ni, Cu–Al–Be, Cu–Al–Ni–Be and Cu–Al–Ni–Ga is approached. For this purpose, [001] oriented single-crystal micropillars of comparable dimensions (around 1 µm in diameter) were milled by focused ion beam technique. All micropillars were cycled up to two hundred superelastic cycles, exhibiting a remarkable reproducibility. The damping capacity was evaluated through the dimensionless loss factor η, calculated for each superelastic cycle, representing the dissipated energy per cycle and unit of volume. The calculated loss factor was averaged between three micro-pillars of each alloy, obtaining the following results: Cu–Al–Ni η = 0.20 ± 0.01; Cu–Al–Be η = 0.100 ± 0.006; Cu–Al–Ni–Be η = 0.072 ± 0.004 and Cu–Al–Ni–Ga η = 0.042 ± 0.002. These four alloys exhibit an intrinsic superelastic damping capacity and offer a wide loss factor band, which constitutes a reference for engineering, since this kind of micro/nano structures can potentially be integrated not only as sensors and actuators but also as dampers in the design of MEMS to improve their reliability. In addition, the study of the dependence of the superelastic loss factor on the diameter of the pillar was approached in the Cu–Al–Ni–Ga alloy, and here we demonstrate that there is a size effect on damping at the nanoscale.
publishDate 2021
dc.date.none.fl_str_mv 2021-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/182542
Gómez Cortés, J.F.; Fuster, Valeria de Los Angeles; Pérez Cerrato, M.; Lorenzo, P.; Ruiz Larrea, I.; et al.; Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys; Elsevier Science SA; Journal of Alloys and Compounds; 883; 11-2021; 1-10
0925-8388
CONICET Digital
CONICET
url http://hdl.handle.net/11336/182542
identifier_str_mv Gómez Cortés, J.F.; Fuster, Valeria de Los Angeles; Pérez Cerrato, M.; Lorenzo, P.; Ruiz Larrea, I.; et al.; Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys; Elsevier Science SA; Journal of Alloys and Compounds; 883; 11-2021; 1-10
0925-8388
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S092583882102274X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2021.160865
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science SA
publisher.none.fl_str_mv Elsevier Science SA
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613018524057600
score 13.070432