Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys
- Autores
- Gómez Cortés, J.F.; Fuster, Valeria de Los Angeles; Pérez Cerrato, M.; Lorenzo, P.; Ruiz Larrea, I.; Breczewski, T.; Nó, M. L.; San Juan, J. M.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Superelasticity is a characteristic thermomechanical property in shape memory alloys (SMA), which is due to a reversible stress-induced martensitic transformation. Nano-compression experiments made possible the study of this property in Cu–Al–Ni SMA micropillars, showing an outstanding ultra-high mechanical damping capacity reproducible for thousands of cycles and reliable over the years. This scenario motivated the present work, where a comparative study of the damping capacity on four copper-based SMA: Cu–Al–Ni, Cu–Al–Be, Cu–Al–Ni–Be and Cu–Al–Ni–Ga is approached. For this purpose, [001] oriented single-crystal micropillars of comparable dimensions (around 1 µm in diameter) were milled by focused ion beam technique. All micropillars were cycled up to two hundred superelastic cycles, exhibiting a remarkable reproducibility. The damping capacity was evaluated through the dimensionless loss factor η, calculated for each superelastic cycle, representing the dissipated energy per cycle and unit of volume. The calculated loss factor was averaged between three micro-pillars of each alloy, obtaining the following results: Cu–Al–Ni η = 0.20 ± 0.01; Cu–Al–Be η = 0.100 ± 0.006; Cu–Al–Ni–Be η = 0.072 ± 0.004 and Cu–Al–Ni–Ga η = 0.042 ± 0.002. These four alloys exhibit an intrinsic superelastic damping capacity and offer a wide loss factor band, which constitutes a reference for engineering, since this kind of micro/nano structures can potentially be integrated not only as sensors and actuators but also as dampers in the design of MEMS to improve their reliability. In addition, the study of the dependence of the superelastic loss factor on the diameter of the pillar was approached in the Cu–Al–Ni–Ga alloy, and here we demonstrate that there is a size effect on damping at the nanoscale.
Fil: Gómez Cortés, J.F.. Universidad del País Vasco; España
Fil: Fuster, Valeria de Los Angeles. Universidad del País Vasco; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Pérez Cerrato, M.. Universidad del País Vasco; España
Fil: Lorenzo, P.. Universidad del País Vasco; España
Fil: Ruiz Larrea, I.. Universidad del País Vasco; España
Fil: Breczewski, T.. Universidad del País Vasco; España
Fil: Nó, M. L.. Universidad del País Vasco; España
Fil: San Juan, J. M.. Universidad del País Vasco; España - Materia
-
CU-BASED ALLOYS
INTERNAL FRICTION
MECHANICAL DAMPING
NANOINDENTATION
SHAPE MEMORY ALLOYS
SIZE EFFECT
SUPERELASTICITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/182542
Ver los metadatos del registro completo
id |
CONICETDig_ca2f1e78c0b4ed06a4f286f68453d504 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/182542 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloysGómez Cortés, J.F.Fuster, Valeria de Los AngelesPérez Cerrato, M.Lorenzo, P.Ruiz Larrea, I.Breczewski, T.Nó, M. L.San Juan, J. M.CU-BASED ALLOYSINTERNAL FRICTIONMECHANICAL DAMPINGNANOINDENTATIONSHAPE MEMORY ALLOYSSIZE EFFECTSUPERELASTICITYhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Superelasticity is a characteristic thermomechanical property in shape memory alloys (SMA), which is due to a reversible stress-induced martensitic transformation. Nano-compression experiments made possible the study of this property in Cu–Al–Ni SMA micropillars, showing an outstanding ultra-high mechanical damping capacity reproducible for thousands of cycles and reliable over the years. This scenario motivated the present work, where a comparative study of the damping capacity on four copper-based SMA: Cu–Al–Ni, Cu–Al–Be, Cu–Al–Ni–Be and Cu–Al–Ni–Ga is approached. For this purpose, [001] oriented single-crystal micropillars of comparable dimensions (around 1 µm in diameter) were milled by focused ion beam technique. All micropillars were cycled up to two hundred superelastic cycles, exhibiting a remarkable reproducibility. The damping capacity was evaluated through the dimensionless loss factor η, calculated for each superelastic cycle, representing the dissipated energy per cycle and unit of volume. The calculated loss factor was averaged between three micro-pillars of each alloy, obtaining the following results: Cu–Al–Ni η = 0.20 ± 0.01; Cu–Al–Be η = 0.100 ± 0.006; Cu–Al–Ni–Be η = 0.072 ± 0.004 and Cu–Al–Ni–Ga η = 0.042 ± 0.002. These four alloys exhibit an intrinsic superelastic damping capacity and offer a wide loss factor band, which constitutes a reference for engineering, since this kind of micro/nano structures can potentially be integrated not only as sensors and actuators but also as dampers in the design of MEMS to improve their reliability. In addition, the study of the dependence of the superelastic loss factor on the diameter of the pillar was approached in the Cu–Al–Ni–Ga alloy, and here we demonstrate that there is a size effect on damping at the nanoscale.Fil: Gómez Cortés, J.F.. Universidad del País Vasco; EspañaFil: Fuster, Valeria de Los Angeles. Universidad del País Vasco; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Pérez Cerrato, M.. Universidad del País Vasco; EspañaFil: Lorenzo, P.. Universidad del País Vasco; EspañaFil: Ruiz Larrea, I.. Universidad del País Vasco; EspañaFil: Breczewski, T.. Universidad del País Vasco; EspañaFil: Nó, M. L.. Universidad del País Vasco; EspañaFil: San Juan, J. M.. Universidad del País Vasco; EspañaElsevier Science SA2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182542Gómez Cortés, J.F.; Fuster, Valeria de Los Angeles; Pérez Cerrato, M.; Lorenzo, P.; Ruiz Larrea, I.; et al.; Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys; Elsevier Science SA; Journal of Alloys and Compounds; 883; 11-2021; 1-100925-8388CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S092583882102274Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2021.160865info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:11Zoai:ri.conicet.gov.ar:11336/182542instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:12.246CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys |
title |
Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys |
spellingShingle |
Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys Gómez Cortés, J.F. CU-BASED ALLOYS INTERNAL FRICTION MECHANICAL DAMPING NANOINDENTATION SHAPE MEMORY ALLOYS SIZE EFFECT SUPERELASTICITY |
title_short |
Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys |
title_full |
Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys |
title_fullStr |
Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys |
title_full_unstemmed |
Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys |
title_sort |
Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys |
dc.creator.none.fl_str_mv |
Gómez Cortés, J.F. Fuster, Valeria de Los Angeles Pérez Cerrato, M. Lorenzo, P. Ruiz Larrea, I. Breczewski, T. Nó, M. L. San Juan, J. M. |
author |
Gómez Cortés, J.F. |
author_facet |
Gómez Cortés, J.F. Fuster, Valeria de Los Angeles Pérez Cerrato, M. Lorenzo, P. Ruiz Larrea, I. Breczewski, T. Nó, M. L. San Juan, J. M. |
author_role |
author |
author2 |
Fuster, Valeria de Los Angeles Pérez Cerrato, M. Lorenzo, P. Ruiz Larrea, I. Breczewski, T. Nó, M. L. San Juan, J. M. |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
CU-BASED ALLOYS INTERNAL FRICTION MECHANICAL DAMPING NANOINDENTATION SHAPE MEMORY ALLOYS SIZE EFFECT SUPERELASTICITY |
topic |
CU-BASED ALLOYS INTERNAL FRICTION MECHANICAL DAMPING NANOINDENTATION SHAPE MEMORY ALLOYS SIZE EFFECT SUPERELASTICITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Superelasticity is a characteristic thermomechanical property in shape memory alloys (SMA), which is due to a reversible stress-induced martensitic transformation. Nano-compression experiments made possible the study of this property in Cu–Al–Ni SMA micropillars, showing an outstanding ultra-high mechanical damping capacity reproducible for thousands of cycles and reliable over the years. This scenario motivated the present work, where a comparative study of the damping capacity on four copper-based SMA: Cu–Al–Ni, Cu–Al–Be, Cu–Al–Ni–Be and Cu–Al–Ni–Ga is approached. For this purpose, [001] oriented single-crystal micropillars of comparable dimensions (around 1 µm in diameter) were milled by focused ion beam technique. All micropillars were cycled up to two hundred superelastic cycles, exhibiting a remarkable reproducibility. The damping capacity was evaluated through the dimensionless loss factor η, calculated for each superelastic cycle, representing the dissipated energy per cycle and unit of volume. The calculated loss factor was averaged between three micro-pillars of each alloy, obtaining the following results: Cu–Al–Ni η = 0.20 ± 0.01; Cu–Al–Be η = 0.100 ± 0.006; Cu–Al–Ni–Be η = 0.072 ± 0.004 and Cu–Al–Ni–Ga η = 0.042 ± 0.002. These four alloys exhibit an intrinsic superelastic damping capacity and offer a wide loss factor band, which constitutes a reference for engineering, since this kind of micro/nano structures can potentially be integrated not only as sensors and actuators but also as dampers in the design of MEMS to improve their reliability. In addition, the study of the dependence of the superelastic loss factor on the diameter of the pillar was approached in the Cu–Al–Ni–Ga alloy, and here we demonstrate that there is a size effect on damping at the nanoscale. Fil: Gómez Cortés, J.F.. Universidad del País Vasco; España Fil: Fuster, Valeria de Los Angeles. Universidad del País Vasco; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina Fil: Pérez Cerrato, M.. Universidad del País Vasco; España Fil: Lorenzo, P.. Universidad del País Vasco; España Fil: Ruiz Larrea, I.. Universidad del País Vasco; España Fil: Breczewski, T.. Universidad del País Vasco; España Fil: Nó, M. L.. Universidad del País Vasco; España Fil: San Juan, J. M.. Universidad del País Vasco; España |
description |
Superelasticity is a characteristic thermomechanical property in shape memory alloys (SMA), which is due to a reversible stress-induced martensitic transformation. Nano-compression experiments made possible the study of this property in Cu–Al–Ni SMA micropillars, showing an outstanding ultra-high mechanical damping capacity reproducible for thousands of cycles and reliable over the years. This scenario motivated the present work, where a comparative study of the damping capacity on four copper-based SMA: Cu–Al–Ni, Cu–Al–Be, Cu–Al–Ni–Be and Cu–Al–Ni–Ga is approached. For this purpose, [001] oriented single-crystal micropillars of comparable dimensions (around 1 µm in diameter) were milled by focused ion beam technique. All micropillars were cycled up to two hundred superelastic cycles, exhibiting a remarkable reproducibility. The damping capacity was evaluated through the dimensionless loss factor η, calculated for each superelastic cycle, representing the dissipated energy per cycle and unit of volume. The calculated loss factor was averaged between three micro-pillars of each alloy, obtaining the following results: Cu–Al–Ni η = 0.20 ± 0.01; Cu–Al–Be η = 0.100 ± 0.006; Cu–Al–Ni–Be η = 0.072 ± 0.004 and Cu–Al–Ni–Ga η = 0.042 ± 0.002. These four alloys exhibit an intrinsic superelastic damping capacity and offer a wide loss factor band, which constitutes a reference for engineering, since this kind of micro/nano structures can potentially be integrated not only as sensors and actuators but also as dampers in the design of MEMS to improve their reliability. In addition, the study of the dependence of the superelastic loss factor on the diameter of the pillar was approached in the Cu–Al–Ni–Ga alloy, and here we demonstrate that there is a size effect on damping at the nanoscale. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/182542 Gómez Cortés, J.F.; Fuster, Valeria de Los Angeles; Pérez Cerrato, M.; Lorenzo, P.; Ruiz Larrea, I.; et al.; Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys; Elsevier Science SA; Journal of Alloys and Compounds; 883; 11-2021; 1-10 0925-8388 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/182542 |
identifier_str_mv |
Gómez Cortés, J.F.; Fuster, Valeria de Los Angeles; Pérez Cerrato, M.; Lorenzo, P.; Ruiz Larrea, I.; et al.; Superelastic damping at nanoscale in ternary and quaternary Cu-based shape memory alloys; Elsevier Science SA; Journal of Alloys and Compounds; 883; 11-2021; 1-10 0925-8388 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S092583882102274X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2021.160865 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science SA |
publisher.none.fl_str_mv |
Elsevier Science SA |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613018524057600 |
score |
13.070432 |