Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable Devices

Autores
Fuster, Valeria de Los Angeles; Gómez Cortés, José F.; Nó, María L.; San Juan, José María
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Shape-memory alloys (SMAs) are the most stretchable metallic materials thanks to their superelastic behavior associated with the stress-induced martensitic transformation. This property makes SMAs of potential interest for flexible and wearable electronic technologies, provided that their properties will be retained at small scale. Nanocompression experiments on Cu-Al-Be SMA single crystals demonstrate that micro- and nanopillars, between 2 µm and 260 nm in diameter, exhibit a reproducible superelastic behavior fully recoverable up to 8% strain, even at the nanoscale. Additionally, these micro-/nanopillars exhibit a size effect on the critical stress for superelasticity, which dramatically increases for pillars smaller than ≈1 µm in diameter, scaling with a power law of exponent n = −2. The observed size effect agrees with a theoretical model of homogeneous nucleation of martensite at small scale and the universality of this scaling power law for Cu-based SMAs is proposed. These results open new directions for using SMAs as stretchable conductors and actuating devices in flexible and wearable technologies.
Fil: Fuster, Valeria de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Gómez Cortés, José F.. Universidad del País Vasco; España
Fil: Nó, María L.. Universidad del País Vasco; España
Fil: San Juan, José María. Universidad del País Vasco; España
Materia
NANOCOMPRESSION
SHAPE-MEMORY ALLOYS
SIZE EFFECTS
STRETCHABLE MATERIALS
SUPERELASTICITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/183520

id CONICETDig_ae0dc76663338333e143dffa8311a906
oai_identifier_str oai:ri.conicet.gov.ar:11336/183520
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable DevicesFuster, Valeria de Los AngelesGómez Cortés, José F.Nó, María L.San Juan, José MaríaNANOCOMPRESSIONSHAPE-MEMORY ALLOYSSIZE EFFECTSSTRETCHABLE MATERIALSSUPERELASTICITYhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Shape-memory alloys (SMAs) are the most stretchable metallic materials thanks to their superelastic behavior associated with the stress-induced martensitic transformation. This property makes SMAs of potential interest for flexible and wearable electronic technologies, provided that their properties will be retained at small scale. Nanocompression experiments on Cu-Al-Be SMA single crystals demonstrate that micro- and nanopillars, between 2 µm and 260 nm in diameter, exhibit a reproducible superelastic behavior fully recoverable up to 8% strain, even at the nanoscale. Additionally, these micro-/nanopillars exhibit a size effect on the critical stress for superelasticity, which dramatically increases for pillars smaller than ≈1 µm in diameter, scaling with a power law of exponent n = −2. The observed size effect agrees with a theoretical model of homogeneous nucleation of martensite at small scale and the universality of this scaling power law for Cu-based SMAs is proposed. These results open new directions for using SMAs as stretchable conductors and actuating devices in flexible and wearable technologies.Fil: Fuster, Valeria de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Gómez Cortés, José F.. Universidad del País Vasco; EspañaFil: Nó, María L.. Universidad del País Vasco; EspañaFil: San Juan, José María. Universidad del País Vasco; EspañaBlackwell Publishing2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/183520Fuster, Valeria de Los Angeles; Gómez Cortés, José F.; Nó, María L. ; San Juan, José María; Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable Devices; Blackwell Publishing; Advanced Electronic Materials; 6; 2; 2-2020; 1-72199-160XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201900741info:eu-repo/semantics/altIdentifier/doi/10.1002/aelm.201900741info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:25:36Zoai:ri.conicet.gov.ar:11336/183520instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:25:36.684CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable Devices
title Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable Devices
spellingShingle Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable Devices
Fuster, Valeria de Los Angeles
NANOCOMPRESSION
SHAPE-MEMORY ALLOYS
SIZE EFFECTS
STRETCHABLE MATERIALS
SUPERELASTICITY
title_short Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable Devices
title_full Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable Devices
title_fullStr Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable Devices
title_full_unstemmed Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable Devices
title_sort Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable Devices
dc.creator.none.fl_str_mv Fuster, Valeria de Los Angeles
Gómez Cortés, José F.
Nó, María L.
San Juan, José María
author Fuster, Valeria de Los Angeles
author_facet Fuster, Valeria de Los Angeles
Gómez Cortés, José F.
Nó, María L.
San Juan, José María
author_role author
author2 Gómez Cortés, José F.
Nó, María L.
San Juan, José María
author2_role author
author
author
dc.subject.none.fl_str_mv NANOCOMPRESSION
SHAPE-MEMORY ALLOYS
SIZE EFFECTS
STRETCHABLE MATERIALS
SUPERELASTICITY
topic NANOCOMPRESSION
SHAPE-MEMORY ALLOYS
SIZE EFFECTS
STRETCHABLE MATERIALS
SUPERELASTICITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Shape-memory alloys (SMAs) are the most stretchable metallic materials thanks to their superelastic behavior associated with the stress-induced martensitic transformation. This property makes SMAs of potential interest for flexible and wearable electronic technologies, provided that their properties will be retained at small scale. Nanocompression experiments on Cu-Al-Be SMA single crystals demonstrate that micro- and nanopillars, between 2 µm and 260 nm in diameter, exhibit a reproducible superelastic behavior fully recoverable up to 8% strain, even at the nanoscale. Additionally, these micro-/nanopillars exhibit a size effect on the critical stress for superelasticity, which dramatically increases for pillars smaller than ≈1 µm in diameter, scaling with a power law of exponent n = −2. The observed size effect agrees with a theoretical model of homogeneous nucleation of martensite at small scale and the universality of this scaling power law for Cu-based SMAs is proposed. These results open new directions for using SMAs as stretchable conductors and actuating devices in flexible and wearable technologies.
Fil: Fuster, Valeria de Los Angeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Gómez Cortés, José F.. Universidad del País Vasco; España
Fil: Nó, María L.. Universidad del País Vasco; España
Fil: San Juan, José María. Universidad del País Vasco; España
description Shape-memory alloys (SMAs) are the most stretchable metallic materials thanks to their superelastic behavior associated with the stress-induced martensitic transformation. This property makes SMAs of potential interest for flexible and wearable electronic technologies, provided that their properties will be retained at small scale. Nanocompression experiments on Cu-Al-Be SMA single crystals demonstrate that micro- and nanopillars, between 2 µm and 260 nm in diameter, exhibit a reproducible superelastic behavior fully recoverable up to 8% strain, even at the nanoscale. Additionally, these micro-/nanopillars exhibit a size effect on the critical stress for superelasticity, which dramatically increases for pillars smaller than ≈1 µm in diameter, scaling with a power law of exponent n = −2. The observed size effect agrees with a theoretical model of homogeneous nucleation of martensite at small scale and the universality of this scaling power law for Cu-based SMAs is proposed. These results open new directions for using SMAs as stretchable conductors and actuating devices in flexible and wearable technologies.
publishDate 2020
dc.date.none.fl_str_mv 2020-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/183520
Fuster, Valeria de Los Angeles; Gómez Cortés, José F.; Nó, María L. ; San Juan, José María; Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable Devices; Blackwell Publishing; Advanced Electronic Materials; 6; 2; 2-2020; 1-7
2199-160X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/183520
identifier_str_mv Fuster, Valeria de Los Angeles; Gómez Cortés, José F.; Nó, María L. ; San Juan, José María; Universal Scaling Law for the Size Effect on Superelasticity at the Nanoscale Promotes the Use of Shape-Memory Alloys in Stretchable Devices; Blackwell Publishing; Advanced Electronic Materials; 6; 2; 2-2020; 1-7
2199-160X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201900741
info:eu-repo/semantics/altIdentifier/doi/10.1002/aelm.201900741
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Blackwell Publishing
publisher.none.fl_str_mv Blackwell Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082693039652864
score 13.22299